Hybrid-Trefftz stress and displacement elements for dynamic analysis of bounded and unbounded saturated porous media

The displacement and stress models of the hybrid-Trefftz finite element formulation are applied to the dynamic analysis of two-dimensional bounded and unbounded saturated porous media problems. The formulation develops from the classical separation of variables in time and space. A finite element approach is used for the discretization in time of the governing differential equations. It leads to a series of uncoupled problems in the space dimension, each of which is subsequently discretized using either the displacement or the stress model of the hybrid-Trefftz finite element formulation. As typical of the Trefftz methods, the domain approximation bases are constrained to satisfy locally all domain equations. An absorbing boundary element is adopted in the extension to the analysis of unbounded media. The paper closes with the illustration of the application of the alternative hybrid-Trefftz stress and displacement elements to the solution of bounded and unbounded consolidation problems.

[1]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[2]  Richard E. Ewing,et al.  Eulerian‐Lagrangian localized adjoint method: The theoretical framework , 1993 .

[3]  J. C. Small,et al.  The analysis of finite elasto-plastic consolidation , 1979 .

[4]  J. Jirousek,et al.  A new 12 DOF quadrilateral element for analysis of thick and thin plates , 1995 .

[5]  J. Jirousek,et al.  Solution of orthotropic plates based on p-extension of the hybrid-Trefftz finite element model , 1990 .

[6]  G. Vörös APPLICATION OF THE HYBRID-TREFFTZ FINITE ELEMENT MODEL TO THIN SHELL ANALYSIS , 1991 .

[7]  Boundary methods, c-complete systems for stokes problems , 1982 .

[8]  Ismael Herrera,et al.  Boundary methods : an algebraic theory , 1984 .

[9]  C. Cismaşiu,et al.  Hybrid-trefftz displacement element for spectral analysis of bounded and unbounded media , 2003 .

[10]  J. Jirousek,et al.  Hybrid‐Trefftz plate bending elements with p‐method capabilities , 1987 .

[11]  C. Cismaşiu,et al.  Numerical implementation of hybrid-Trefftz displacement elements , 1999 .

[12]  K. Terzaghi,et al.  Soil mechanics in engineering practice , 1948 .

[13]  I. Herrera Boundary methods: A criterion for completeness. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Moldovan,et al.  Hybrid-Trefftz Finite Element Models for Bounded and Unbounded Elastodynamic Problems , 2006 .

[15]  I. Jirouseka,et al.  A family of quadrilateral hybrid-Trefftz p-elements for thick plate analysis , .

[16]  J. A. Freitas,et al.  Formulation of elastostatic hybrid-Trefftz stress elements , 1998 .

[17]  O. C. Zienkiewicz,et al.  Solution of Helmholtz equation by Trefftz method , 1991 .

[18]  J. A. Teixeira de Freitas,et al.  Mixed finite element solution of time-dependent problems , 2008 .

[19]  J. Jirousek,et al.  Basis for development of large finite elements locally satisfying all field equations , 1978 .

[20]  O. C. Zienkiewicz,et al.  Application of the Trefftz method in plane elasticity problems , 1990 .

[21]  J. A. Teixeira de Freitas,et al.  Hybrid finite element formulations for elastodynamic analysis in the frequency domain , 1999 .

[22]  J. A. Teixeira de Freitas,et al.  Hybrid-Trefftz stress elements for elastoplasticity , 1998 .

[23]  J. Jirousek,et al.  T-elements: State of the art and future trends , 1996 .

[24]  E. Kita,et al.  Trefftz method: an overview , 1995 .

[25]  J. Jirousek,et al.  Large finite elements method for the solution of problems in the theory of elasticity , 1982 .

[26]  H. Gourgeon,et al.  Boundary Methods. C-Complete Systems for the Biharmonic Equations , 1981 .

[27]  O. C. Zienkiewicz,et al.  Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions , 1989 .

[28]  Reinhard E. Piltner,et al.  Recent developments in the Trefftz method for finite element and boundary element applications , 1995 .