Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques

A crucial goal for increasing thermal energy harvesting will be to progress towards atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination of computationally efficient atomistic methodologies with quantum transport based approaches. Here, we review our recent work on this problem, by presenting selected applications of the PHONON tool to the description of phonon transport in nanostructured materials. The PHONON tool is a module developed as part of the Density-Functional Tight-Binding (DFTB) software platform. We discuss the anisotropic phonon band structure of selected puckered two-dimensional materials, helical and horizontal doping effects in the phonon thermal conductivity of boron nitride-carbon heteronanotubes, phonon filtering in molecular junctions, and a novel computational methodology to investigate time-dependent phonon transport at the atomistic level. These examples illustrate the versatility of our implementation of phonon transport in combination with density functional-based methods to address specific nanoscale functionalities, thus potentially allowing for designing novel thermal devices.

[1]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[2]  Francesco Mauri,et al.  Ab initio variational approach for evaluating lattice thermal conductivity , 2012, 1212.0470.

[3]  H. Sevinçli,et al.  First‐Principle‐Based Phonon Transport Properties of Nanoscale Graphene Grain Boundaries , 2018, Advanced science.

[4]  Motohiko Ezawa,et al.  Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems , 2014, 1410.5166.

[5]  T. Niehaus,et al.  Higher harmonics and ac transport from time dependent density functional theory , 2013, 1305.3746.

[6]  Bing-Lin Gu,et al.  Thermal transport in graphene junctions and quantum dots , 2010 .

[7]  C. Lewenkopf,et al.  Phononic heat transport in nanomechanical structures: steady-state and pumping , 2017, 1701.02779.

[8]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[9]  M. Elstner SCC-DFTB: what is the proper degree of self-consistency? , 2007, The journal of physical chemistry. A.

[10]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2015, 1511.06994.

[11]  M. Ezawa,et al.  Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene , 2015, 1512.07598.

[12]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[13]  D. Poulikakos,et al.  Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes. , 2015, Nano letters.

[14]  S. Roche,et al.  Engineering carbon chains from mechanically stretched graphene-based materials , 2011 .

[15]  T. Frauenheim,et al.  A Self Energy Model of Dephasing in Molecular Junctions , 2016 .

[16]  Spin-boson thermal rectifier. , 2004, Physical review letters.

[17]  Yuliang Zhao,et al.  Graphene covalently binding aryl groups: conductivity increases rather than decreases. , 2011, ACS nano.

[18]  Huanan Li,et al.  Nonequilibrium Green’s function method for quantum thermal transport , 2013, Frontiers of Physics.

[19]  D. Tománek,et al.  Designing Isoelectronic Counterparts to Layered Group V Semiconductors. , 2015, ACS nano.

[20]  Vibhor Singh,et al.  Mechanics of freely‐suspended ultrathin layered materials , 2014, 1409.1173.

[21]  Chengyuan Wang,et al.  Mechanical properties of hybrid boron nitride–carbon nanotubes , 2016 .

[22]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[23]  Wagner Expansions of nonequilibrium Green's functions. , 1991, Physical review. B, Condensed matter.

[24]  Lei Wang,et al.  Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond , 2012 .

[25]  Alexander A. Balandin,et al.  Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering , 2011 .

[26]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[27]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[28]  H. Ago,et al.  Strain engineering the properties of graphene and other two-dimensional crystals. , 2014, Physical chemistry chemical physics : PCCP.

[29]  P. Reddy,et al.  Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. , 2012, ACS nano.

[30]  Walter Thiel,et al.  Semiempirical quantum–chemical methods , 2014 .

[31]  G. Voth,et al.  Benchmark Study of the SCC-DFTB Approach for a Biomolecular Proton Channel. , 2014, Journal of Chemical Theory and Computation.

[32]  Andreas D. Wieck,et al.  Electrons surfing on a sound wave as a platform for quantum optics with flying electrons , 2011, Nature.

[33]  Li Shi,et al.  Emerging challenges and materials for thermal management of electronics , 2014 .

[34]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[35]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[36]  Fabien Guillemot,et al.  In Vitro picosecond ultrasonics in a single cell , 2008 .

[37]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[38]  I. I. Ivanchik THEORY OF THE MANY-PARTICLE SYSTEMS. , 1968 .

[39]  D. Stradi,et al.  Electron-phonon scattering from Green’s function transport combined with molecular dynamics: Applications to mobility predictions , 2017, 1701.02883.

[40]  A. Carlo,et al.  Incoherent electron-phonon scattering in octanethiols , 2004 .

[41]  L. Keldysh Diagram technique for nonequilibrium processes , 1964 .

[42]  G. Seifert,et al.  Quantifying charge transfer energies at donor–acceptor interfaces in small-molecule solar cells with constrained DFTB and spectroscopic methods , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  Nonequilibrium Green’s function approach to mesoscopic thermal transport , 2006, cond-mat/0605028.

[44]  G. Su,et al.  Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. , 2014, Physical chemistry chemical physics : PCCP.

[45]  S. Pei,et al.  Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. , 2010, Nature materials.

[46]  Gotthard Seifert,et al.  Density functional tight binding , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. , 2006, Physical review letters.

[48]  The influence of the stacking orientation of C and BN stripes in the structure, energetics, and electronic properties of BC2N nanotubes. , 2011, Nanotechnology.

[49]  G. Cuniberti,et al.  Thermoelectric Properties of Functionalized Graphene Grain Boundaries , 2015 .

[50]  Daniel Karlsson,et al.  Phononic heat transport in the transient regime: An analytic solution , 2016 .

[51]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[52]  E. Meyhofer,et al.  Quantized thermal transport in single-atom junctions , 2017, Science.

[53]  Michael Gaus,et al.  Density functional tight binding: application to organic and biological molecules , 2014 .

[54]  M. Oviedo,et al.  Dynamical simulation of the optical response of photosynthetic pigments. , 2010, Physical chemistry chemical physics : PCCP.

[55]  S. Borini,et al.  Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides , 2013, 1301.3469.

[56]  X. Gong,et al.  Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics. , 2017, Nanoscale.

[57]  William H. Butler,et al.  On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis , 2004 .

[58]  A. Dhar Heat transport in low-dimensional systems , 2008, 0808.3256.

[59]  Gotthard Seifert,et al.  Density‐functional tight binding—an approximate density‐functional theory method , 2012 .

[60]  Leo P. Kadanoff,et al.  Quantum statistical mechanics : Green's function methods in equilibrium and nonequilibrium problems , 2018 .

[61]  Chien-Cheng Chang,et al.  Anisotropic thermal transport in phosphorene: effects of crystal orientation. , 2015, Nanoscale.

[62]  X. Ruan,et al.  Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. , 2014, Nano letters.

[63]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[64]  A. Croy,et al.  Efficient auxiliary-mode approach for time-dependent nanoelectronics , 2016 .

[65]  Sophia R. Sklan Splash, pop, sizzle: Information processing with phononic computing , 2015 .

[66]  M. Ratner,et al.  Heat conduction in molecular transport junctions , 2006, cond-mat/0611169.

[67]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[68]  A. Croy,et al.  Propagation scheme for nonequilibrium dynamics of electron transport in nanoscale devices , 2009, 0908.2936.

[69]  Á. Rubio,et al.  Time-Dependent Thermal Transport Theory. , 2014, Physical review letters.

[70]  Georg Woltersdorf,et al.  Spin Hall voltages from a.c. and d.c. spin currents , 2013, Nature Communications.

[71]  Seifert,et al.  Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. , 1995, Physical review. B, Condensed matter.

[72]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[73]  B. Popescu,et al.  Time-dependent view of sequential transport through molecules with rapidly fluctuating bridges. , 2012, Physical review letters.

[74]  Alexander V. Balatsky,et al.  Cooling mechanisms in molecular conduction junctions , 2009 .

[75]  P. Royer,et al.  Thermal conductivity of silicon bulk and nanowires: Effects of isotopic composition, phonon confinement, and surface roughness , 2010 .

[76]  Antti-Pekka Jauho,et al.  Inelastic transport theory from first principles: Methodology and application to nanoscale devices , 2006, cond-mat/0611562.

[77]  A. Ozpineci,et al.  Quantum effects of thermal conductance through atomic chains , 2001 .

[78]  Electron-vibration interaction in transport through atomic gold wires , 2005, cond-mat/0508470.

[79]  M. R. Wagner,et al.  Two-Dimensional Phononic Crystals: Disorder Matters. , 2015, Nano letters.

[80]  Molecular-dynamics calculation of the thermal conductivity of vitreous silica , 1999, cond-mat/9903033.

[81]  Kenneth D. Jordan,et al.  Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer , 1994 .

[82]  Mika Prunnila,et al.  Nanophononics: state of the art and perspectives , 2016, The European Physical Journal B.

[83]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[84]  Li Shi,et al.  Two-Dimensional Phonon Transport in Supported Graphene , 2010, Science.

[85]  M. Nomura,et al.  Heat guiding and focusing using ballistic phonon transport in phononic nanostructures , 2016, Nature Communications.

[86]  M. Pourfath,et al.  Highly anisotropic thermal conductivity of arsenene: An ab initio study , 2015, 1508.01856.

[87]  G. Cuniberti,et al.  Tuning quantum electron and phonon transport in two-dimensional materials by strain engineering: a Green's function based study. , 2017, Physical chemistry chemical physics : PCCP.

[88]  D. Donadio,et al.  Mechanical Tuning of Thermal Transport in a Molecular Junction , 2015, 1511.06058.

[89]  G. Cuniberti,et al.  Doping engineering of thermoelectric transport in BNC heteronanotubes. , 2019, Physical chemistry chemical physics : PCCP.

[90]  Massimiliano Di Ventra,et al.  Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions , 2011 .

[91]  Seeram Ramakrishna,et al.  A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials , 2013 .

[92]  P. Hänggi,et al.  Berry-phase-induced heat pumping and its impact on the fluctuation theorem. , 2010, Physical review letters.

[93]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[94]  Timothy S. Fisher,et al.  Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method , 2007 .

[95]  Heat transport through atomic contacts. , 2016, Nature nanotechnology.

[96]  P. Ajayan,et al.  Doping Graphitic and Carbon Nanotube Structures with Boron and Nitrogen , 1994, Science.

[97]  Z. Su,et al.  Connecting effect on the first hyperpolarizability of armchair carbon-boron-nitride heteronanotubes: pattern versus proportion. , 2016, Physical chemistry chemical physics : PCCP.

[98]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[99]  Dimensional crossover of thermal conductance in nanowires , 2007, 0704.0702.

[100]  U. Weiss Quantum Dissipative Systems , 1993 .

[101]  M. S. Ferreira,et al.  Density of states of helically symmetric boron carbon nitride nanotubes , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[102]  Alexander A. Balandin,et al.  Effect of phonon confinement on the thermoelectric figure of merit of quantum wells , 1998 .

[103]  Cristina H Amon,et al.  Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance , 2013, Nature Communications.

[104]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[105]  H. Sevinçli,et al.  Green function, quasi-classical Langevin and Kubo–Greenwood methods in quantum thermal transport , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[106]  J. Richard,et al.  Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method. , 2012, The Review of scientific instruments.

[107]  Ethan C. Ahn,et al.  Phonon Conduction in Silicon Nanobeam Labyrinths , 2017, Scientific Reports.

[108]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[109]  Young Ki Choi,et al.  Quantitative scanning thermal microscopy using double scan technique , 2008 .

[110]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[111]  C. Adamo,et al.  Density-functional-based molecular-dynamics simulations of molten salts. , 2005, The Journal of chemical physics.

[112]  Nonequilibrium Green's function method for thermal transport in junctions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[113]  Jia-yue Yang,et al.  Methodology Perspective of Computing Thermal Transport in Low-Dimensional Materials and Nanostructures: The Old and the New , 2018, ACS omega.

[114]  A. Rubio,et al.  Time-dependent quantum transport: A practical scheme using density functional theory , 2005, cond-mat/0502391.

[115]  Guanxiong Liu,et al.  Graphene quilts for thermal management of high-power GaN transistors. , 2012, Nature communications.

[116]  N. Mingo Anharmonic phonon flow through molecular-sized junctions , 2006 .

[117]  Alan J. H. McGaughey,et al.  Strongly anisotropic in-plane thermal transport in single-layer black phosphorene , 2015, Scientific Reports.

[118]  H. Sevinçli,et al.  A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons , 2013, Scientific reports.

[119]  P. Keblinski,et al.  Effect of chain conformation in the phonon transport across a Si-polyethylene single-molecule covalent junction , 2011 .

[120]  Julian Schwinger,et al.  Theory of Many-Particle Systems. I , 1959 .

[121]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[122]  Keiji Morokuma,et al.  Systematic study of vibrational frequencies calculated with the self‐consistent charge density functional tight‐binding method , 2004, J. Comput. Chem..

[123]  Ronggui Yang,et al.  Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces , 2012 .

[124]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[125]  Sándor Suhai,et al.  A Self‐Consistent Charge Density‐Functional Based Tight‐Binding Method for Predictive Materials Simulations in Physics, Chemistry and Biology , 2000 .

[126]  Jie Hu,et al.  Communication: Padé spectrum decomposition of Fermi function and Bose function. , 2010, The Journal of chemical physics.

[127]  C. H. W. Barnes,et al.  On-demand single-electron transfer between distant quantum dots , 2011, Nature.

[128]  G. Seifert,et al.  Tight-binding density functional theory: an approximate Kohn-Sham DFT scheme. , 2007, The journal of physical chemistry. A.

[129]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[130]  Alexander A. Balandin,et al.  Phononics in low-dimensional materials , 2012 .

[131]  D. Segal Heat flow in nonlinear molecular junctions : Master equation analysis , 2005, cond-mat/0512569.

[132]  Sean C. Smith,et al.  C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations. , 2009, Journal of the American Chemical Society.

[133]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[134]  N. Mingo,et al.  Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization , 2018, Nature Communications.

[135]  G. Seifert,et al.  Transport properties of MoS2 nanoribbons: edge priority , 2012 .

[136]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[137]  Yan Mo,et al.  Time-dependent density-functional theory for open systems , 2007 .

[138]  G. Cuniberti,et al.  Anisotropic Thermoelectric Response in Two-Dimensional Puckered Structures , 2016 .

[139]  Z. Gang Nanoscale Energy Transport and Harvesting: A Computational Study , 2015 .

[140]  A. Zettl,et al.  Stability and dynamics of small molecules trapped on graphene , 2010 .

[141]  Xiaojun Wu,et al.  Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers , 2014, 1403.6209.

[142]  Timothy S. Fisher,et al.  The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport , 2007 .

[143]  A. Croy,et al.  Atomistic Framework for Time-Dependent Thermal Transport , 2018, The Journal of Physical Chemistry C.

[144]  E. Pop Energy dissipation and transport in nanoscale devices , 2010, 1003.4058.

[145]  Natalio Mingo,et al.  Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach , 2003 .

[146]  Stephan Irle,et al.  Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. , 2004, The Journal of chemical physics.

[147]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[148]  S. Louie,et al.  Electronic transport in polycrystalline graphene. , 2010, Nature materials.

[149]  D. Cahill,et al.  Thermal conductance of interfaces between highly dissimilar materials , 2006 .

[150]  Christoph Meier,et al.  Non-Markovian evolution of the density operator in the presence of strong laser fields , 1999 .

[151]  A. Eisfeld,et al.  Analytic representations of bath correlation functions for ohmic and superohmic spectral densities using simple poles. , 2014, The Journal of chemical physics.

[152]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[153]  A. Nitzan,et al.  Molecular heat pump. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[154]  G. Cuniberti,et al.  Selective Transmission of Phonons in Molecular Junctions with Nanoscopic Thermal Baths , 2019, The Journal of Physical Chemistry C.