Transcription of σ54‐dependent but not σ28‐dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus

We performed a genetic analysis of flagellar regulation in Campylobacter jejuni, from which we elucidated key portions of the flagellar transcriptional cascade in this bacterium. For this study, we developed a reporter gene system for C. jejuni involving astA, encoding arylsulphatase, and placed astA under control of the σ54‐regulated flgDE2 promoter in C. jejuni strain 81‐176. The astA reporter fusion combined with transposon mutagenesis allowed us to identify genes in which insertions abolished flgDE2 expression; genes identified were on both the chromosome and the plasmid pVir. Included among the chromosomal genes were genes encoding a putative sensor kinase and the σ54‐dependent transcriptional activator, FlgR. In addition, we identified specific flagellar genes, including flhA, flhB, fliP, fliR and flhF, that are also required for transcription of flgDE2 and are presumably at the beginning of the C. jejuni flagellar transcriptional cascade. Deletion of any of these genes reduced transcription of both flgDE2 and another σ54‐dependent flagellar gene, flaB, encoding a minor flagellin. Transcription of the σ28‐dependent gene flaA, encoding the major flagellin, was largely unaffected in the mutants. Further examination of flaA transcription revealed significant σ28‐independent transcription and only weak repressive activity of the putative anti‐σ28 factor FlgM. Our study suggests that σ54‐dependent transcription of flagellar genes in C. jejuni is linked to the formation of the flagellar secretory apparatus. A key difference in the C. jejuni flagellar transcriptional cascade compared with other bacteria that use σ28 for transcription of flagellar genes is that a mechanism to repress significantly σ28‐dependent transcription of flaA in flagellar assembly mutants is absent in C. jejuni.

[1]  V. DiRita,et al.  Natural Transformation of Campylobacter jejuni Requires Components of a Type II Secretion System , 2003, Journal of bacteriology.

[2]  R. Alm,et al.  DNA Sequence and Mutational Analyses of the pVir Plasmid of Campylobacter jejuni 81-176 , 2002, Infection and Immunity.

[3]  R. Ramphal,et al.  FleQ, the Major Flagellar Gene Regulator in Pseudomonas aeruginosa, Binds to Enhancer Sites Located Either Upstream or Atypically Downstream of the RpoN Binding Site , 2002, Journal of bacteriology.

[4]  J. Ketley,et al.  Mutational and transcriptional analysis of the Campylobacter jejuni flagellar biosynthesis gene flhB. , 2002, Microbiology.

[5]  D. Acheson,et al.  Identification of Motility and Autoagglutination Campylobacter jejuni Mutants by Random Transposon Mutagenesis , 2002, Infection and Immunity.

[6]  B. Wren,et al.  A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. , 2002, Microbiology.

[7]  K. Hughes,et al.  Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome , 2002, Molecular microbiology.

[8]  B. Akerley,et al.  Analysis of gene function in bacterial pathogens by GAMBIT. , 2002, Methods in enzymology.

[9]  P. Legrain,et al.  Identification of the Helicobacter pylori anti‐σ28 factor , 2001, Molecular microbiology.

[10]  C. Constantinidou,et al.  Roles of rpoN, fliA,and flgR in Expression of Flagella inCampylobacter jejuni , 2001, Journal of bacteriology.

[11]  V. DiRita,et al.  Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility , 2001, Molecular microbiology.

[12]  K. Klose,et al.  The novel σ54‐ and σ28‐dependent flagellar gene transcription hierarchy of Vibrio cholerae , 2001, Molecular microbiology.

[13]  J. Ketley,et al.  The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance. , 2001, FEMS microbiology letters.

[14]  B. Margolis,et al.  Generation of deletion and point mutations with one primer in a single cloning step. , 2000, BioTechniques.

[15]  B. Wren,et al.  Mutational Analysis of Genes Encoding the Early Flagellar Components of Helicobacter pylori: Evidence for Transcriptional Regulation of Flagellin A Biosynthesis , 2000, Journal of bacteriology.

[16]  K. Hughes,et al.  Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription , 2000, Molecular microbiology.

[17]  R. Alm,et al.  Involvement of a Plasmid in Virulence of Campylobacter jejuni 81-176 , 2000, Infection and Immunity.

[18]  L. McCarter,et al.  Analysis of the Polar Flagellar Gene System ofVibrio parahaemolyticus , 2000, Journal of bacteriology.

[19]  A. Matin,et al.  The G‐protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida , 2000, Molecular microbiology.

[20]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[21]  C. Constantinidou,et al.  An Iron-Regulated Alkyl Hydroperoxide Reductase (AhpC) Confers Aerotolerance and Oxidative Stress Resistance to the Microaerophilic Pathogen Campylobacter jejuni , 1999, Journal of bacteriology.

[22]  R. Macnab,et al.  Components of the Salmonella Flagellar Export Apparatus and Classification of Export Substrates , 1999, Journal of bacteriology.

[23]  V. Scarlato,et al.  Motility of Helicobacter pylori Is Coordinately Regulated by the Transcriptional Activator FlgR, an NtrC Homolog , 1999, Journal of bacteriology.

[24]  M. Chadsey,et al.  The flagellar anti-sigma factor FlgM actively dissociates Salmonella typhimurium sigma28 RNA polymerase holoenzyme. , 1998, Genes & development.

[25]  M. Frosch,et al.  The Central, Surface-Exposed Region of the Flagellar Hook Protein FlgE of Campylobacter jejuniShows Hypervariability among Strains , 1998, Journal of bacteriology.

[26]  J. Mekalanos,et al.  Distinct roles of an alternative sigma factor during both free‐swimming and colonizing phases of the Vibrio cholerae pathogenic cycle , 1998, Molecular microbiology.

[27]  S. Lory,et al.  The Pseudomonas aeruginosa Flagellar Cap Protein, FliD, Is Responsible for Mucin Adhesion , 1998, Infection and Immunity.

[28]  J. Mekalanos,et al.  Copyright © 1998, American Society for Microbiology Differential Regulation of Multiple Flagellins in Vibrio cholerae , 1997 .

[29]  J. Ketley,et al.  7.7 Genetic Manipulation of Enteric Campylobacter Species , 1998 .

[30]  T. Trust,et al.  The flgE gene of Campylobacter coli is under the control of the alternative sigma factor sigma54 , 1997, Journal of bacteriology.

[31]  A. Newton,et al.  Regulation of the Caulobacter flagellar gene hierarchy; not just for motility , 1997, Molecular microbiology.

[32]  A. Schmitz,et al.  Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes , 1997, Journal of bacteriology.

[33]  P. Guerry,et al.  Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfatase production in Campylobacter jejuni , 1996, Journal of bacteriology.

[34]  Lucy Shapiro,et al.  Cell Cycle Control by an Essential Bacterial Two-Component Signal Transduction Protein , 1996, Cell.

[35]  R. Macnab,et al.  Flagella and motility , 1996 .

[36]  A. Benson,et al.  Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD , 1995, Journal of bacteriology.

[37]  T. Trust,et al.  Isolation of motile and non‐motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells , 1994, Molecular microbiology.

[38]  A. Newton,et al.  Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes , 1994, Journal of bacteriology.

[39]  P. O’Toole,et al.  Non‐motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production , 1994, Molecular microbiology.

[40]  V. DiRita,et al.  Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae , 1994, Molecular microbiology.

[41]  K. Kutsukake,et al.  Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium , 1994, Journal of Bacteriology.

[42]  A. Ninfa,et al.  The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Alm,et al.  Systems of experimental genetics for Campylobacter species. , 1994, Methods in enzymology.

[44]  K. Hughes,et al.  Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. , 1993, Science.

[45]  T. Wassenaar,et al.  Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. , 1993, Journal of general microbiology.

[46]  L. Tompkins,et al.  Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures , 1993, Infection and immunity.

[47]  N. Stern,et al.  Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants , 1993, Applied and environmental microbiology.

[48]  K. Ohnishi,et al.  A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti‐sigma factor inhibits the activity of the flagellum‐specific Sigma factor, σF , 1992, Molecular microbiology.

[49]  G. Ordal,et al.  flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP‐binding protein , 1992, Molecular microbiology.

[50]  S. Lory,et al.  The filA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis , 1992, Molecular microbiology.

[51]  K. Hughes,et al.  Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium , 1991, Journal of bacteriology.

[52]  T. Wassenaar,et al.  Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. , 1991, The EMBO journal.

[53]  M. E. Power,et al.  Role of two flagellin genes in Campylobacter motility , 1991, Journal of bacteriology.

[54]  W. Gaastra,et al.  Structural and functional analysis of two Campylobacter jejuni flagellin genes. , 1990, The Journal of biological chemistry.

[55]  S. Thornton,et al.  Genomic organization and expression of Campylobacter flagellin genes , 1990, Journal of bacteriology.

[56]  Y. Ohya,et al.  Transcriptional analysis of the flagellar regulon of Salmonella typhimurium , 1990, Journal of bacteriology.

[57]  S. Lory,et al.  The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene , 1990, Journal of bacteriology.

[58]  R. Higuchi 22 – RECOMBINANT PCR , 1990 .

[59]  D. Hartl,et al.  Genetic applications of an inverse polymerase chain reaction. , 1988, Genetics.

[60]  L. Tompkins,et al.  Gene disruption and replacement as a feasible approach for mutagenesis of Campylobacter jejuni , 1988, Journal of bacteriology.

[61]  M. Blaser,et al.  Experimental Campylobacter jejuni infection in humans. , 1988, The Journal of infectious diseases.

[62]  M. J. Henderson,et al.  Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis , 1979, Journal of bacteriology.

[63]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.