Skutterudites: promising power conversion thermoelectrics

The past dozen years or so have witnessed a major resurgence of interest in thermoelectrics and specifically in identifying novel, potentially promising materials that might deliver better performance than the existing thermoelectric structures. Among the materials that have generated considerable interest are skutterudites. The open crystal environment of skutterudite compounds typified by the presence of structural voids offers a terrific opportunity to modify the material by inserting foreign species into the voids and thus dramatically alter both electronic and phonon transport. With a judicious choice of the filler species one can prepare both n- and p-type filled skutterudites that display exceptionally high thermoelectric figure of merit ZT in excess of unity in the range of temperatures between 700K-1000K. Filled skutterudites are therefore excellent candidates for thermoelectric power generation applications in the intermediate to high temperature regime of operation. In this paper I will briefly review the progress made in improving the thermoelectric properties of filled skutterudites and point out areas where I believe further improvement is likely to be achieved.

[1]  K. Okazaki,et al.  High Pressure Synthesis of New Filled Skutterudites , 2001 .

[2]  Eric J. Bauer,et al.  Chemical properties and thermopower of the new series of skutterudite Ce1-pYbpFe4Sb12 , 2003 .

[3]  High-temperature thermoelectric properties of n-type BayNixCo4-xSb12 , 2001, ICT 2001.

[4]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[5]  C. Uher,et al.  Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites , 2003 .

[6]  C. Uher,et al.  Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members , 1998 .

[7]  Brian C. Sales,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. , 1996 .

[8]  W. Jeitschko,et al.  LaFe4P12 with filled CoAs3‐type structure and isotypic lanthanoid–transition metal polyphosphides , 1977 .

[9]  Yu Zhang,et al.  Nanostructured Co1-xNixSb3 skutterudites : Synthesis, thermoelectric properties, and theoretical modeling , 2003 .

[10]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[11]  J. Nagao,et al.  Electronic Structure and Thermoelectric Properties of Ytterbium-Filled Skutterudites , 2001 .

[12]  M. P. Walsh,et al.  PbTe-based quantum-dot thermoelectric materials with high ZT , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[13]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[14]  B. Sales,et al.  FILLED SKUTTERUDITE ANTIMONIDES : ELECTRON CRYSTALS AND PHONON GLASSES , 1997 .

[15]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[16]  G. J. Snyder,et al.  Development of high efficiency segmented thermoelectric unicouples , 2001, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).

[17]  Donald T. Morelli,et al.  Low temperature properties of the filled skutterudite CeFe4Sb12 , 1995 .

[18]  I. I. Mazin,et al.  CALCULATED THERMOELECTRIC PROPERTIES OF LA-FILLED SKUTTERUDITES , 1997 .

[19]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[20]  George S. Nolas,et al.  Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .

[21]  B. Sales,et al.  Thermoelectric properties of thallium-filled skutterudites , 2000 .

[22]  E. Bauer,et al.  Novel thermoelectric skutterudites SnyNi4Sb12-xSnx , 2003 .

[23]  Ctirad Uher,et al.  Chapter 5 Skutterudites: Prospective novel thermoelectrics , 2001 .

[24]  David C. Johnson,et al.  Synthesis of Metastable Post-Transition-Metal Iron Antimony Skutterudites Using the Multilayer Precursor Method , 1998 .

[25]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[26]  George S. Nolas,et al.  High figure of merit in Eu-filled CoSb3-based skutterudites , 2002 .

[27]  A. Borshchevsky,et al.  High figure of merit in Ce-filled skutterudites , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[28]  Berger,et al.  Structure and physical properties of the thermoelectric skutterudites Eu y Fe 4- x Co x Sb 12 , 2002 .

[29]  C. Uher,et al.  Multi-filling approach for the improvement of thermoelectric properties of skutterudites , 2001, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).