Computing longest duration flocks in trajectory data

Moving point object data can be analyzed through the discovery of patterns. We consider the computational efficiency of computing two of the most basic spatio-temporal patterns in trajectories, namely flocks and meetings. The patterns are large enough subgroups of the moving point objects that exhibit similar movement and proximity for a certain amount of time. We consider the problem of computing a longest duration flock or meeting. We give several exact and approximation algorithms, and also show that some variants are as hard as MaxClique to compute and approximate.

[1]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[2]  Jiawei Han,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[3]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[4]  Sanjay Chawla,et al.  Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary Regions and Thoroughfares in Object Mobility Databases , 2006, DASFAA.

[5]  Changzhou Wang,et al.  Supporting fast search in time series for movement patterns in multiple scales , 1998, CIKM '98.

[6]  Andrew J. Bulpitt,et al.  Learning spatio-temporal patterns for predicting object behaviour , 2000, Image Vis. Comput..

[7]  Arild Stubhaug Acta Mathematica , 1886, Nature.

[8]  John F. Roddick,et al.  An Updated Bibliography of Temporal, Spatial, and Spatio-temporal Data Mining Research , 2000, TSDM.

[9]  Marc J. van Kreveld,et al.  Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.

[10]  Patrick Laube,et al.  Analyzing Relative Motion within Groups of Trackable Moving Point Objects , 2002, GIScience.

[11]  Joachim Gudmundsson,et al.  Reporting flock patterns , 2006, Comput. Geom..

[12]  George Kollios,et al.  Complex Spatio-Temporal Pattern Queries , 2005, VLDB.

[13]  Raymond T Ng,et al.  Detecting outliers from large datasets , 2001 .

[14]  Boris Aronov,et al.  On approximating the depth and related problems , 2005, SODA '05.

[15]  Max J. Egenhofer,et al.  Modeling Moving Objects over Multiple Granularities , 2002, Annals of Mathematics and Artificial Intelligence.

[16]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[17]  Margrit Betke,et al.  Motion Mining: Discovering Spatio-Temporal Patterns in Databases of Human Motion , 2001, DMKD.

[18]  Bettina Speckmann,et al.  Efficient Detection of Patterns in 2D Trajectories of Moving Points , 2007, GeoInformatica.

[19]  Andrew U. Frank,et al.  Life and motion of socio-economic units , 2001 .

[20]  Panos Kalnis,et al.  On Discovering Moving Clusters in Spatio-temporal Data , 2005, SSTD.

[21]  George Kollios,et al.  Mining, indexing, and querying historical spatiotemporal data , 2004, KDD.

[22]  Bernard Chazelle,et al.  Better lower bounds on detecting affine and spherical degeneracies , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.