The computation of the velocity field

The organization of movement in the changing retinal image provides a valuable source of information for analysing the environment in terms of objects, their motion in space, and their three-dimensional structure. A description of this movement is not provided to our visual system directly, however; it must be inferred from the pattern of changing intensity that reaches the eye. This paper examines the problem of motion measurement, which we formulate as the computation of an instantaneous two-dimensional velocity field from the changing image. Initial measurements of motion take place at the location of significant intensity changes. These measurements provide only one component of local velocity, and must be integrated to compute the two-dimensional velocity field. A fundamental problem for this integration stage is that the velocity field is not determined uniquely from information available in the changing image. We formulate an additional constraint of smoothness of the velocity field, based on the physical assumption that surfaces are generally smooth, which allows the computation of a unique velocity field. A theoretical analysis of the conditions under which this computation yields the correct velocity field suggests that the solution is physically plausible. Empirical studies show the predictions of this computation to be consistent with human motion perception.

[1]  J. Ternus Experimentelle Untersuchungen über phänomenale Identität , 1926 .

[2]  W. Neff A Critical Investigation of the Visual Apprehension of Movement , 1936 .

[3]  C. O. Roelofs,et al.  Some aspects of apparent motion , 1953 .

[4]  H. Wallach,et al.  The kinetic depth effect. , 1953, Journal of experimental psychology.

[5]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[6]  H. Wallach,et al.  Circles and derived figures in rotation. , 1956, The American journal of psychology.

[7]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[8]  H. Holland The Spiral After-Effect , 1966 .

[9]  S. Anstis,et al.  Phi movement as a subtraction process. , 1970, Vision research.

[10]  John A. Leese,et al.  The determination of cloud pattern motions from geosynchronous satellite image data , 1970, Pattern Recognit..

[11]  Daniel Kahneman,et al.  Stroboscope motion: Effects of duration and interval1 , 1970 .

[12]  H. Spekreijse,et al.  Electrophysiological Correlate of Binocular Depth Perception in Man , 1970, Nature.

[13]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[14]  Robert L. Lillestrand,et al.  Techniques ror Change Detection , 1972, IEEE Transactions on Computers.

[15]  ERIC A. SMITH,et al.  Automated Cloud Tracking Using Precisely Aligned Digital ATS Pictures , 1972, IEEE Transactions on Computers.

[16]  P. A. Kolers Aspects of motion perception , 1972 .

[17]  Joseph S. Lappin,et al.  Sufficient conditions for the discrimination of motion , 1973 .

[18]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[19]  F. Attneave,et al.  Apparent movement in tridimensional space , 1973 .

[20]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[21]  Jerry L. Potter,et al.  Velocity as a Cue to Segmentation , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  S. Anstis,et al.  Illusory reversal of visual depth and movement during changes of contrast , 1975, Vision Research.

[23]  J. Lappin,et al.  The detection of coherence in moving random-dot patterns , 1976, Vision Research.

[24]  A Pantle,et al.  A multistable movement display: evidence for two separate motion systems in human vision. , 1976, Science.

[25]  J. Potter Scene segmentation using motion information , 1977 .

[26]  A. Pantle,et al.  Apparent Movement of Successively Generated Subjective Figures , 1978, Perception.

[27]  Shimon Ullman,et al.  Relaxation and constrained optimization by local processes , 1979 .

[28]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[29]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  S. Ullman The Interpretation of Visual Motion , 1979 .

[32]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  W F Clocksin,et al.  Perception of Surface Slant and Edge Labels from Optical Flow: A Computational Approach , 1980, Perception.

[34]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  J. T. Petersik,et al.  The Effects of Spatial and Temporal Factors on the Perception of Stroboscopic Rotation Simulations , 1980, Perception.

[36]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  William B. Thompson,et al.  Lower-Level Estimation and Interpretation of Visual Motion , 1981, Computer.

[39]  Shimon Ullman,et al.  Analysis of Visual Motion by Biological and Computer Systems , 1981, Computer.

[40]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Eric L. W. Grimson,et al.  From Images to Surfaces: A Computational Study of the Human Early Visual System , 1981 .

[42]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[43]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[44]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.

[45]  Hans-Hellmut Nagel On change detection and displacement vector estimation in image sequences , 1982, Pattern Recognit. Lett..

[46]  Larry S. Davis,et al.  Contour-based motion estimation , 1982, Comput. Vis. Graph. Image Process..

[47]  Daryl T. Lawton,et al.  Processing translational motion sequences , 1983, Comput. Vis. Graph. Image Process..

[48]  Shimon Ullman,et al.  Computational Studies in the Interpretation of Structure and Motion: Summary and Extension , 1983 .

[49]  S. Ullman Recent Computational Studies in the Interpretation of Structure from Motion , 1983 .

[50]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[51]  Alan L. Yuille The Smoothest Velocity Field Token Matching Schemes , 1984, ECAI.

[52]  S Ullman,et al.  Maximizing Rigidity: The Incremental Recovery of 3-D Structure from Rigid and Nonrigid Motion , 1984, Perception.