Exact sum rules for spectral zeta functions of homogeneous 1D quantum oscillators, revisited

We survey sum rules for spectral zeta functions of homogeneous 1D Schrödinger operators, that mainly result from the exact Wentzel–Kramers–Brillouin method.

[1]  L. Takhtajan,et al.  The Riemann Problem , 2007 .

[2]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[3]  A. Voros Zeta-regularization for exact-WKB resolution of a general 1D Schrödinger equation , 2012, 1202.3100.

[4]  A. Voros Zeta Functions over Zeros of Zeta Functions , 2009 .

[5]  V. Novokshenov Algebraic analysis of singular perturbation theory(Translations of Mathematical Monographs 227)By Takahiro Kawai and Yoshitsugu Takei (Translated by Goro Kato):130 pp., US$29.00 ISBN 0-8218-3547-5(American Mathematical Society, Providence, RI, 2005) , 2008 .

[6]  T. Kawai,et al.  Algebraic Analysis of Singular Perturbation Theory , 2005 .

[7]  A. Voros The general 1D Schr\"odinger equation as an exactly solvable problem , 2004, math-ph/0412041.

[8]  A. Avila Convergence of an Exact Quantization Scheme , 2003, math/0306218.

[9]  Jonathan M. Borwein,et al.  Experimentation in Mathematics: Computational Paths to Discovery , 2004 .

[10]  S. Lukyanov,et al.  Spectral Determinants for Schrödinger Equation and Q-Operators of Conformal Field Theory , 1998, hep-th/9812247.

[11]  R. Tateo,et al.  Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations , 1998, hep-th/9812211.

[12]  A. Voros Airy function - exact WKB results for potentials of odd degree , 1998, math-ph/9811001.

[13]  W. Lay The quartic oscillator , 1997 .

[14]  A. Voros Exact Anharmonic Quantization Condition (In One Dimension) , 1997 .

[15]  R. Crandall On the quantum zeta function , 1996 .

[16]  A. Voros,et al.  Spectral Zeta Functions , 1992 .

[17]  Peter C. Jurs,et al.  Mathematica , 2019, J. Chem. Inf. Comput. Sci..

[18]  M. Berry Spectral zeta functions for Aharonov-Bohm quantum billiards , 1986 .

[19]  C. Itzykson,et al.  Sum rules for quantum billiards , 1986 .

[20]  Silverstone,et al.  JWKB connection-formula problem revisited via Borel summation. , 1985, Physical review letters.

[21]  F. Steiner Magic sum rules for confinement potentials , 1985 .

[22]  A. Voros The return of the quartic oscillator. The complex WKB method , 1983 .

[23]  A. Voros Zeta functions of the quartic (and homogeneous anharmonic) oscillators , 1982 .

[24]  G. Parisi Trace identities for the Schröedinger operator and the WKB method , 1982 .

[25]  A. Voros The zeta function of the quartic oscillator , 1980 .

[26]  R. Dingle Asymptotic expansions : their derivation and interpretation , 1975 .

[27]  渋谷 泰隆 Global theory of a second order linear ordinary differential equation with a polynomial coefficient , 1975 .

[28]  R. Balian,et al.  Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .

[29]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[30]  S. Minakshisundaram,et al.  Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.

[31]  S. Lawomir,et al.  Quantum Maps , 2022 .