Exact sum rules for spectral zeta functions of homogeneous 1D quantum oscillators, revisited
暂无分享,去创建一个
[1] L. Takhtajan,et al. The Riemann Problem , 2007 .
[2] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[3] A. Voros. Zeta-regularization for exact-WKB resolution of a general 1D Schrödinger equation , 2012, 1202.3100.
[4] A. Voros. Zeta Functions over Zeros of Zeta Functions , 2009 .
[5] V. Novokshenov. Algebraic analysis of singular perturbation theory(Translations of Mathematical Monographs 227)By Takahiro Kawai and Yoshitsugu Takei (Translated by Goro Kato):130 pp., US$29.00 ISBN 0-8218-3547-5(American Mathematical Society, Providence, RI, 2005) , 2008 .
[6] T. Kawai,et al. Algebraic Analysis of Singular Perturbation Theory , 2005 .
[7] A. Voros. The general 1D Schr\"odinger equation as an exactly solvable problem , 2004, math-ph/0412041.
[8] A. Avila. Convergence of an Exact Quantization Scheme , 2003, math/0306218.
[9] Jonathan M. Borwein,et al. Experimentation in Mathematics: Computational Paths to Discovery , 2004 .
[10] S. Lukyanov,et al. Spectral Determinants for Schrödinger Equation and Q-Operators of Conformal Field Theory , 1998, hep-th/9812247.
[11] R. Tateo,et al. Anharmonic oscillators, the thermodynamic Bethe ansatz and nonlinear integral equations , 1998, hep-th/9812211.
[12] A. Voros. Airy function - exact WKB results for potentials of odd degree , 1998, math-ph/9811001.
[13] W. Lay. The quartic oscillator , 1997 .
[14] A. Voros. Exact Anharmonic Quantization Condition (In One Dimension) , 1997 .
[15] R. Crandall. On the quantum zeta function , 1996 .
[16] A. Voros,et al. Spectral Zeta Functions , 1992 .
[17] Peter C. Jurs,et al. Mathematica , 2019, J. Chem. Inf. Comput. Sci..
[18] M. Berry. Spectral zeta functions for Aharonov-Bohm quantum billiards , 1986 .
[19] C. Itzykson,et al. Sum rules for quantum billiards , 1986 .
[20] Silverstone,et al. JWKB connection-formula problem revisited via Borel summation. , 1985, Physical review letters.
[21] F. Steiner. Magic sum rules for confinement potentials , 1985 .
[22] A. Voros. The return of the quartic oscillator. The complex WKB method , 1983 .
[23] A. Voros. Zeta functions of the quartic (and homogeneous anharmonic) oscillators , 1982 .
[24] G. Parisi. Trace identities for the Schröedinger operator and the WKB method , 1982 .
[25] A. Voros. The zeta function of the quartic oscillator , 1980 .
[26] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[27] 渋谷 泰隆. Global theory of a second order linear ordinary differential equation with a polynomial coefficient , 1975 .
[28] R. Balian,et al. Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .
[29] Michael V Berry,et al. Semiclassical approximations in wave mechanics , 1972 .
[30] S. Minakshisundaram,et al. Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.
[31] S. Lawomir,et al. Quantum Maps , 2022 .