A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE

We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 square degrees of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < ‘ < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We nd that the SPT and WMAP data are consistent with each other and, when combined, are well t by a spatially at, CDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar uctuations is ns = 0:9663 0:0112. We detect, at 5 signicance, the eect of gravitational lensing on the CMB power spectrum, and nd its amplitude to be consistent with the CDM cosmological model. We explore a number of extensions beyond the CDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensorto-scalar ratio to be r < 0:21 (95% CL) and constrain the running of the scalar spectral index to be dns=d lnk = 0:024 0:013. We strongly detect the eects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 , while a model without neutrinos is rejected at 7.5 . The primordial helium abundance is measured to be Yp = 0:296 0:030, and the eective number of relativistic species is measured to be Ne = 3:85 0:62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0:9668 0:0093, r < 0:17 (95% CL), and Ne = 3:86 0:42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high eective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters. Subject headings: cosmology { cosmology:cosmic microwave background { cosmology: observations { large-scale structure of universe

[1]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[2]  Martin White,et al.  Acoustic Signatures in the Cosmic Microwave Background , 1996 .

[3]  G. Mangano,et al.  A robust upper limit on Neff from BBN, circa 2011 , 2011, 1103.1261.

[4]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[5]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[6]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[7]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.

[8]  Peter A. R. Ade,et al.  The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  Ryan Keisler,et al.  How massless neutrinos affect the cosmic microwave background damping tail , 2011, 1104.2333.

[10]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[11]  John P. Snyder,et al.  Map Projections: A Working Manual , 2012 .

[12]  Edward J. Wollack,et al.  Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.

[13]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[14]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[15]  O. Zahn,et al.  MODELING EXTRAGALACTIC FOREGROUNDS AND SECONDARIES FOR UNBIASED ESTIMATION OF COSMOLOGICAL PARAMETERS FROM PRIMARY COSMIC MICROWAVE BACKGROUND ANISOTROPY , 2011, 1102.5195.

[16]  Gennaro Miele,et al.  PArthENoPE: Public algorithm evaluating the nucleosynthesis of primordial elements , 2007, Comput. Phys. Commun..

[17]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.

[18]  M. Cortês,et al.  On what scale should inflationary observables be constrained , 2007, astro-ph/0702170.

[19]  Edward J. Wollack,et al.  Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. , 2011, Physical review letters.

[20]  A. Slosar,et al.  Cosmic microwave weak lensing data as a test for the dark universe , 2008, 0803.2309.

[21]  Matias Zaldarriaga,et al.  Reconstructing projected matter density power spectrum from cosmic microwave background , 1999 .

[22]  P. A. R. Ade,et al.  IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA , 2010, 1012.4788.

[23]  T. Thuan,et al.  THE PRIMORDIAL ABUNDANCE OF 4He: EVIDENCE FOR NON-STANDARD BIG BANG NUCLEOSYNTHESIS , 2010, 1001.4440.

[24]  Kipac,et al.  The observed growth of massive galaxy clusters – IV. Robust constraints on neutrino properties , 2009, 0911.1788.

[25]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[26]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[27]  Michael S. Turner,et al.  Primordial Nucleosynthesis Including Radiative, Coulomb, and Finite Temperature Corrections to Weak Rates , 1982 .

[28]  The Primordial Abundance of 4He: A Self-consistent Empirical Analysis of Systematic Effects in a Large Sample of Low-Metallicity H II Regions , 2007, astro-ph/0702072.

[29]  O-Kab Kwon,et al.  Scalar perturbation in symmetric Lee-Wick bouncing universe , 2011, 1109.5753.

[30]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[31]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[32]  M. Peimbert,et al.  Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.

[33]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY , 2010, 1007.5256.

[34]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[35]  S. Antusch,et al.  Phenomenology of hybrid scenarios of neutrino dark energy , 2008, 0807.4930.

[36]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY , 2010, 1009.0847.

[37]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[38]  M. Turner,et al.  Big-bang nucleosynthesis enters the precision era , 1997, astro-ph/9706069.

[39]  Wayne Hu,et al.  Cosmological information from lensed CMB power spectra , 2006 .

[40]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[41]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[42]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.

[43]  D. Munshi,et al.  A CONSTRAINT ON THE INTEGRATED MASS POWER SPECTRUM OUT TO z = 1100 FROM LENSING OF THE COSMIC MICROWAVE BACKGROUND , 2010, 1012.1600.

[44]  G. Steigman Inflationary cosmology , 1984, Nature.

[45]  S. Ho,et al.  Correlation of CMB with large-scale structure. II. Weak lensing , 2008, 0801.0644.

[46]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[47]  Uros Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2004 .

[48]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[49]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[50]  K. Olive,et al.  A new approach to systematic uncertainties and self-consistency in helium abundance determinations , 2010, 1001.5218.

[51]  K. Olive,et al.  Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo , 2010, 1012.2385.

[52]  Primordial Nucleosynthesis in the Precision Cosmology Era , 2007, 0712.1100.

[53]  P. A. R. Ade,et al.  MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA , 2009, 0906.1181.

[54]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[55]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[56]  S. Dodelson,et al.  Precision Detection of the Cosmic Neutrino Background , 1998, astro-ph/9803095.

[57]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[58]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[59]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[60]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[61]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[62]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[63]  Wayne Hu,et al.  Mass Reconstruction with CMB Polarization , 2001 .

[64]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[65]  Adrian T. Lee,et al.  South Pole Telescope optics. , 2008, Applied optics.

[66]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .