A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE
暂无分享,去创建一个
M. Lueker | J. E. Ruhl | Z. Staniszewski | J. E. Carlstrom | Adrian T. Lee | E. M. Leitch | C. L. Reichardt | E. M. George | K. A. Aird | B. A. Benson | L. E. Bleem | T. M. Crawford | A. T. Crites | N. W. Halverson | W. L. Holzapfel | S. Hoover | R. Keisler | J. J. McMahon | J. Mehl | S. S. Meyer | T. E. Montroy | T. Natoli | S. Padin | K. K. Schaffer | E. Shirokoff | K. Story | J. D. Vieira | R. Williamson | C. Pryke | L. Knox | G. P. Holder | K. Vanderlinde | D. Luong-Van | J. D. Hrubes | O. Zahn | A. van Engelen | J. Dudley | J. Mohr | S. Meyer | A. Lee | T. Montroy | J. Ruhl | B. Benson | J. Carlstrom | C. Chang | T. Haan | M. Dobbs | N. Halverson | W. Holzapfel | T. Natoli | S. Padin | E. Shirokoff | A. Stark | K. Story | K. Vanderlinde | J. Vieira | H. Spieler | M. Joy | O. Zahn | L. Knox | Z. Hou | M. Millea | T. de Haan | H. Cho | K. Schaffer | C. Reichardt | R. Keisler | K. Aird | L. Bleem | T. Crawford | A. Crites | J. Dudley | E. George | G. Holder | S. Hoover | J. Hrubeš | E. Leitch | M. Lueker | D. Luong-Van | J. McMahon | J. Mehl | T. Plagge | C. Pryke | L. Shaw | Z. Staniszewski | A. V. Engelen | R. Williamson | Hsiao-mei Cho. | C. L. Chang | J. J. Mohr | T. de Haan | H. M. Cho | M. A. Dobbs | M. Joy | A. T. Lee | T. Plagge | L. Shaw | H. G. Spieler | A. A. Stark | Z. Hou | M. Millea | A. van Engelen | C. Chang | C. Pryke | S. Meyer
[1] P. A. R. Ade,et al. GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.
[2] Martin White,et al. Acoustic Signatures in the Cosmic Microwave Background , 1996 .
[3] G. Mangano,et al. A robust upper limit on Neff from BBN, circa 2011 , 2011, 1103.1261.
[4] Edward J. Wollack,et al. THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.
[5] Oliver Zahn,et al. Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.
[6] P. A. R. Ade,et al. HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.
[7] Edward J. Wollack,et al. THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.
[8] Peter A. R. Ade,et al. The South Pole Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.
[9] Ryan Keisler,et al. How massless neutrinos affect the cosmic microwave background damping tail , 2011, 1104.2333.
[10] H. Trac,et al. TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.
[11] John P. Snyder,et al. Map Projections: A Working Manual , 2012 .
[12] Edward J. Wollack,et al. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.
[13] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[14] J. Frieman,et al. COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.
[15] O. Zahn,et al. MODELING EXTRAGALACTIC FOREGROUNDS AND SECONDARIES FOR UNBIASED ESTIMATION OF COSMOLOGICAL PARAMETERS FROM PRIMARY COSMIC MICROWAVE BACKGROUND ANISOTROPY , 2011, 1102.5195.
[16] Gennaro Miele,et al. PArthENoPE: Public algorithm evaluating the nucleosynthesis of primordial elements , 2007, Comput. Phys. Commun..
[17] P. A. R. Ade,et al. MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.
[18] M. Cortês,et al. On what scale should inflationary observables be constrained , 2007, astro-ph/0702170.
[19] Edward J. Wollack,et al. Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. , 2011, Physical review letters.
[20] A. Slosar,et al. Cosmic microwave weak lensing data as a test for the dark universe , 2008, 0803.2309.
[21] Matias Zaldarriaga,et al. Reconstructing projected matter density power spectrum from cosmic microwave background , 1999 .
[22] P. A. R. Ade,et al. IMPROVED CONSTRAINTS ON COSMIC MICROWAVE BACKGROUND SECONDARY ANISOTROPIES FROM THE COMPLETE 2008 SOUTH POLE TELESCOPE DATA , 2010, 1012.4788.
[23] T. Thuan,et al. THE PRIMORDIAL ABUNDANCE OF 4He: EVIDENCE FOR NON-STANDARD BIG BANG NUCLEOSYNTHESIS , 2010, 1001.4440.
[24] Kipac,et al. The observed growth of massive galaxy clusters – IV. Robust constraints on neutrino properties , 2009, 0911.1788.
[25] A. Lewis,et al. Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.
[26] Jeremiah P. Ostriker,et al. SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.
[27] Michael S. Turner,et al. Primordial Nucleosynthesis Including Radiative, Coulomb, and Finite Temperature Corrections to Weak Rates , 1982 .
[28] The Primordial Abundance of 4He: A Self-consistent Empirical Analysis of Systematic Effects in a Large Sample of Low-Metallicity H II Regions , 2007, astro-ph/0702072.
[29] O-Kab Kwon,et al. Scalar perturbation in symmetric Lee-Wick bouncing universe , 2011, 1109.5753.
[30] Adrian T. Lee,et al. The 10 Meter South Pole Telescope , 2009, 0907.4445.
[31] E. Leitch,et al. IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.
[32] M. Peimbert,et al. Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.
[33] Edward J. Wollack,et al. THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY , 2010, 1007.5256.
[34] Alexey Vikhlinin,et al. CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.
[35] S. Antusch,et al. Phenomenology of hybrid scenarios of neutrino dark energy , 2008, 0807.4930.
[36] Peter A. R. Ade,et al. THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY , 2010, 1009.0847.
[37] L. Verde,et al. Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.
[38] M. Turner,et al. Big-bang nucleosynthesis enters the precision era , 1997, astro-ph/9706069.
[39] Wayne Hu,et al. Cosmological information from lensed CMB power spectra , 2006 .
[40] Stefano Casertano,et al. A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.
[41] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[42] Adrian T. Lee,et al. EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD , 2009, 0912.2338.
[43] D. Munshi,et al. A CONSTRAINT ON THE INTEGRATED MASS POWER SPECTRUM OUT TO z = 1100 FROM LENSING OF THE COSMIC MICROWAVE BACKGROUND , 2010, 1012.1600.
[44] G. Steigman. Inflationary cosmology , 1984, Nature.
[45] S. Ho,et al. Correlation of CMB with large-scale structure. II. Weak lensing , 2008, 0801.0644.
[46] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[47] Uros Seljak,et al. Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2004 .
[48] D. Nagai,et al. IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.
[49] David J. Schlegel,et al. Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.
[50] K. Olive,et al. A new approach to systematic uncertainties and self-consistency in helium abundance determinations , 2010, 1001.5218.
[51] K. Olive,et al. Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo , 2010, 1012.2385.
[52] Primordial Nucleosynthesis in the Precision Cosmology Era , 2007, 0712.1100.
[53] P. A. R. Ade,et al. MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA , 2009, 0906.1181.
[54] J. Silk. COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .
[55] Edward J. Wollack,et al. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.
[56] S. Dodelson,et al. Precision Detection of the Cosmic Neutrino Background , 1998, astro-ph/9803095.
[57] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[58] C. B. Netterfield,et al. MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.
[59] Wayne Hu,et al. Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .
[60] Turner,et al. CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.
[61] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[62] J. R. Bond,et al. SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.
[63] Wayne Hu,et al. Mass Reconstruction with CMB Polarization , 2001 .
[64] P. A. R. Ade,et al. ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.
[65] Adrian T. Lee,et al. South Pole Telescope optics. , 2008, Applied optics.
[66] Gennaro Miele,et al. Relic neutrino decoupling including flavour oscillations , 2005 .