Broadband Multiwavelength Study of LHAASO-detected Active Galactic Nuclei

Recently, the Large High Altitude Air Shower Observatory (LHAASO) collaboration presented the first catalog of γ-ray sources using 508 days of LHAASO data, from 2021 March to 2022 September. This catalog contains four blazars and a possible LINER-type active galactic nucleus (AGN) counterpart. In this work, we establish averaged multiwavelength spectral energy distributions (SEDs) by combining data from the Fermi-Large Area Telescope, Swift, Zwicky Transient Facility, and Wide-field Infrared Survey Explorer (WISE) covering the same period as the LHAASO detection. In general, these five AGNs are found in low states at all wavelengths. To study the multiwavelength properties of these AGNs, several jet emission models, including the one-zone leptonic model, the one-zone leptonic and hadronuclear (pp) model, the one-zone proton-synchrotron model, and the spine-layer model, are applied to reproduce their averaged SEDs. We find that the one-zone leptonic model can reproduce most of the SEDs, except for the high-energy tail of the LHAASO spectra of Mrk 421 and Mrk 501. To improve the fitting, emission from pp interactions is favored in the framework of a one-zone model. The spine-layer model, which can be treated as a multizone scenario, can also provide good spectral fits. The influence of different extragalactic background light models on fitting a LHAASO energy spectrum is also discussed.

[1]  Ze-Rui Wang,et al.  A multi-zone view on the multi-wavelength emission of blazars , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  S. Bhattacharyya,et al.  Understanding the Very High Energy γ-ray excess in nearby blazars using leptonic model , 2023, Monthly Notices of the Royal Astronomical Society.

[3]  C. Boisson,et al.  Modelling the variable emission states of γ-ray emitting narrow-line seyfert 1 galaxies , 2023, Monthly Notices of the Royal Astronomical Society.

[4]  Q. Hu,et al.  Two-injection Scenario for the Hard X-Ray Excess Observed in Mrk 421 , 2023, The Astrophysical Journal.

[5]  Ruo-Yu Liu,et al.  On the Hadronic Origin of High-energy Emission of γ-Ray-loud Narrow-line Seyfert 1 PKS 1502+036 , 2022, The Astrophysical Journal.

[6]  L. A. Antonelli,et al.  Multimessenger Characterization of Markarian 501 during Historically Low X-Ray and γ-Ray Activity , 2022, The Astrophysical Journal Supplement Series.

[7]  D. Hartmann,et al.  Modeling the Extragalactic Background Light and the Cosmic Star Formation History , 2022, The Astrophysical Journal.

[8]  I. Polanco,et al.  Photohadronic interpretations of the different incarnations of 1ES 2344+514 , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[10]  P. Majumdar,et al.  Multiwavelength temporal and spectral study of TeV blazar 1ES 1727+502 during 2014 to 2021 , 2022, Monthly Notices of the Royal Astronomical Society.

[11]  P. Giommi,et al.  A multi-messenger study of the blazar PKS 0735+178: a new major neutrino source candidate , 2022, 2204.05060.

[12]  P. Giommi,et al.  PKS 1424+240: yet another masquerading BL Lac object as a possible IceCube neutrino source , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  R. Xue,et al.  Can the one-zone hadronuclear model explain the hard-TeV spectrum of BL Lac objects? , 2022, Astronomy & Astrophysics.

[14]  A. Moiseev,et al.  Incremental Fermi Large Area Telescope Fourth Source Catalog , 2022, The Astrophysical Journal Supplement Series.

[15]  R. Xue,et al.  Hadronuclear interpretation of the possible neutrino emission from PKS B1424-418, GB6 J1040+0617 and PKS 1502+106 , 2022, Research in Astronomy and Astrophysics.

[16]  J. C. D'iaz-V'elez,et al.  Study of the Very High Energy Emission of M87 through its Broadband Spectral Energy Distribution , 2021, The Astrophysical Journal.

[17]  Xinghua Ma Chapter 1 LHAASO Instruments and Detector technology , 2021, Chinese Physics C.

[18]  Astronomy,et al.  Magnetic Field Strengths of the Synchrotron Self-Absorption Region in the Jet of CTA 102 During Radio Flares , 2021, 2111.14025.

[19]  M. de Naurois The Making of Catalogues of Very-High-Energy γ-ray Sources , 2021, Universe.

[20]  L. Fu,et al.  The Relativistic Jet and Central Engine of Fermi Blazars , 2021, The Astrophysical Journal.

[21]  S. Razzaque,et al.  Cosmogenic gamma-ray and neutrino fluxes from blazars associated with IceCube events , 2021, Astronomy & Astrophysics.

[22]  L. A. Antonelli,et al.  Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017 , 2021, Astronomy & Astrophysics.

[23]  J. A. Garc'ia-Gonz'alez,et al.  Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC , 2021, The Astrophysical Journal.

[24]  M. Razzano,et al.  Catalog of Long-term Transient Sources in the First 10 yr of Fermi-LAT Data , 2021, The Astrophysical Journal Supplement Series.

[25]  S. Rajpoot,et al.  Extreme HBL-like Behavior of Markarian 421 and Its Two-zone Photohadronic Interpretation , 2021, 2104.11999.

[26]  W. Rhode,et al.  The relentless variability of Mrk 421 from the TeV to the radio , 2021, 2101.10651.

[27]  L. Dou,et al.  Mid-infrared Outbursts in Nearby Galaxies (MIRONG). I. Sample Selection and Characterization , 2020, The Astrophysical Journal Supplement Series.

[28]  J. Primack,et al.  An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era , 2020, Monthly Notices of the Royal Astronomical Society.

[29]  Engineering,et al.  Multiwavelength variability and correlation studies of Mrk 421 during historically low X-ray and γ-ray activity in 2015–2016 , 2020, Monthly Notices of the Royal Astronomical Society.

[30]  S. Rajpoot,et al.  A Two-zone Photohadronic Interpretation of the EHBL-like Behavior of the 2016 Multi-TeV Flares of 1ES 1959+650 , 2020, 2011.00082.

[31]  A. Franckowiak,et al.  Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106 , 2020, The Astrophysical Journal.

[32]  S. Nagataki,et al.  A Two-zone Photohadronic Scenario for EHBL-like Behavior of Mrk 501 , 2020, The Astrophysical Journal.

[33]  India.,et al.  An intermittent extreme BL Lac: MWL study of 1ES 2344+514 in an enhanced state , 2020, Monthly Notices of the Royal Astronomical Society.

[34]  L. A. Antonelli,et al.  Testing two-component models on very high-energy gamma-ray-emitting BL Lac objects , 2020, Astronomy & Astrophysics.

[35]  P. Giommi,et al.  3HSP J095507.9+355101: A flaring extreme blazar coincident in space and time with IceCube-200107A , 2020, Astronomy & Astrophysics.

[36]  J. Mao,et al.  Multicolor Optical Monitoring of the Blazar S5 0716+714 from 2017 to 2019 , 2020, The Astrophysical Journal Supplement Series.

[37]  L. A. Antonelli,et al.  The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies , 2020, The Astrophysical Journal.

[38]  India.,et al.  New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes , 2019, The Astrophysical Journal Supplement Series.

[39]  S. Razzaque,et al.  Ultrahigh-energy Cosmic-Ray Interactions as the Origin of Very High-energy γ-Rays from BL Lacertae Objects , 2019, The Astrophysical Journal.

[40]  E. Pueschel,et al.  Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS , 2019, The Astrophysical Journal.

[41]  R. Xue,et al.  A Two-zone Model for Blazar Emission: Implications for TXS 0506+056 and the Neutrino Event IceCube-170922A , 2019, The Astrophysical Journal.

[42]  T. Carver Ten years of All-sky Neutrino Point-SourceSearches , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[43]  Engineering,et al.  Unraveling the Complex Behavior of Mrk 421 with Simultaneous X-Ray and VHE Observations during an Extreme Flaring Activity in 2013 April , 2019, The Astrophysical Journal Supplement Series.

[44]  India.,et al.  Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity , 2019, Astronomy & Astrophysics.

[45]  L. A. Antonelli,et al.  Measurement of the extragalactic background light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1 , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[47]  R. Xue,et al.  On the Minimum Jet Power of TeV BL Lac Objects in the p–γ Model , 2018, The Astrophysical Journal.

[48]  M. Razzano,et al.  A gamma-ray determination of the Universe’s star formation history , 2018, Science.

[49]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[50]  I. Collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[51]  C. Boisson,et al.  Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056 , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[52]  Shan Gao,et al.  Modelling the coincident observation of a high-energy neutrino and a bright blazar flare , 2018, Nature Astronomy.

[53]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[54]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[55]  V. Zabalza Naima: a Python package for inference of particle distribution properties from nonthermal spectra , 2016 .

[56]  B. Rani,et al.  Location of γ-ray emission and magnetic field strengths in OJ 287 , 2016, 1607.00725.

[57]  Danzengluobu,et al.  4.5 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF MRK 421 DURING THE ARGO-YBJ AND FERMI COMMON OPERATION TIME , 2015, 1511.06851.

[58]  G. Ghisellini,et al.  On the magnetization of BL Lac jets , 2015, 1509.08710.

[59]  L. S. Miranda,et al.  Multi-TeV flaring from blazars: Markarian 421 as a case study , 2015, 1501.00973.

[60]  Tucson,et al.  Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010 , 2014, 1412.3576.

[61]  C. Boisson,et al.  A hadronic origin for ultra-high-frequency-peaked BL Lac objects , 2014, 1411.5968.

[62]  Tenerife,et al.  Infrared properties of blazars: putting the GASP-WEBT sources into context , 2014, 1405.4168.

[63]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[64]  A. Mastichiadis,et al.  Mrk 421 as a case study for TeV and X-ray variability in leptohadronic models , 2013, 1304.2957.

[65]  Astronomy,et al.  Discovery of very high energy gamma-ray emission from the blazar 1ES 1727+502 with the MAGIC Telescopes , 2013, 1302.6140.

[66]  Astrophysics,et al.  The simultaneous low state spectral energy distribution of 1ES 2344+514 from radio to very high energies , 2012, 1211.2608.

[67]  M. Cohen,et al.  MOJAVE: Monitoring of Jets in Active galactic nuclei with VLBA Experiments , 2012, 1207.5457.

[68]  Nrao,et al.  Deep imaging of Fanaroff–Riley Class I radio galaxies with lobes , 2011, 1107.2511.

[69]  R. Somerville,et al.  Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra , 2011, 1104.0671.

[70]  S. Ando,et al.  Determination of intergalactic magnetic fields from gamma ray data , 2010, 1012.5313.

[71]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[72]  C. Conselice,et al.  Extragalactic background light inferred from AEGIS galaxy-SED-type fractions , 2010, 1103.4534.

[73]  France.,et al.  X-ray and multiwavelength view of NGC 4278: A LINER-Seyfert connection? , 2010, 1004.5134.

[74]  G. Ghisellini,et al.  TeV BL Lac objects at the dawn of the Fermi era , 2009, 0909.0651.

[75]  S. O’Sullivan,et al.  Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets , 2009, 0907.5211.

[76]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[77]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[78]  C. Dermer,et al.  Synchrotron Self-Compton Analysis of TeV X-Ray-Selected BL Lacertae Objects , 2008, 0802.1529.

[79]  University College Dublin,et al.  Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-Ray/TeV Correlated Variability , 2007, 0710.4138.

[80]  HESS Collaboration F. Aharonian,et al.  New constraints on the mid-IR EBL from the HESS discovery of VHE gamma-rays from 1ES 0229+200 , 2007, 0709.4584.

[81]  J. Pforr,et al.  Host galaxy subtraction of TeV candidate BL Lacertae objects , 2007, 0709.2533.

[82]  Martin J. Rees,et al.  Implications of very rapid TeV variability in blazars , 2007, 0709.0540.

[83]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[84]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-ray selected AGNs in the XMDS Survey , 2007, astro-ph/0703255.

[85]  G. Dubus,et al.  Unveiling the X-ray/TeV engine in Mkn 421 , 2006, astro-ph/0610270.

[86]  F. Rieger,et al.  Fermi acceleration in astrophysical jets , 2006, astro-ph/0610141.

[87]  U. N. Mexico,et al.  A Sample of Low-Redshift BL Lacertae Objects. II. EVN and MERLIN Data and Multiwavelength Analysis , 2006, astro-ph/0604224.

[88]  J. E. al. Observations of Mkn 421 with the MAGIC Telescope , 2006, astro-ph/0603478.

[89]  T. Weekes,et al.  A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution , 2005, astro-ph/0505325.

[90]  F. Aharonian,et al.  Klein-Nishina effects in the spectra of non-thermal sources immersed in external radiation fields , 2005, astro-ph/0504388.

[91]  G. Ghisellini,et al.  Correlation between the TeV and X-ray emission in high-energy peaked BL Lac objects , 2004, astro-ph/0412405.

[92]  Usa,et al.  The Two-sided Parsec-Scale Structure of the Low-Luminosity Active Galactic Nucleus in NGC 4278 , 2004, astro-ph/0412204.

[93]  G. Ghisellini,et al.  Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties , 2004, astro-ph/0406093.

[94]  P. Giommi,et al.  Log-parabolic spectra and particle acceleration in the BL Lac object Mkn 421: Spectral analysis of the complete BeppoSAX wide band X-ray data set , 2003, astro-ph/0312260.

[95]  R. Walker,et al.  An Attempt to Probe the Radio Jet Collimation Regions in NGC 4278, NGC 4374 (M84), and NGC 6166 , 2003, astro-ph/0309743.

[96]  P. Edwards,et al.  Parsec-Scale Properties of Markarian 501 , 2003, astro-ph/0309285.

[97]  Tinggui Wang,et al.  The size of the broad‐line regions in dwarf active galaxies , 2003 .

[98]  Xue-bing Wu,et al.  Supermassive black hole masses of AGNs with elliptical hosts , 2002, astro-ph/0203158.

[99]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[100]  H. Sol,et al.  The multifrequency emission of Mrk 501 From radio to TeV gamma-rays , 2001 .

[101]  K. E. Turver,et al.  Very High Energy Gamma Rays from PKS 2155–304 , 1999 .

[102]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[103]  A. Marscher,et al.  An Analysis of the Synchrotron Self-Compton Model for the Multi--Wave Band Spectra of Blazars , 1996 .

[104]  Christine D. Wilson,et al.  Detection of Gamma Rays with E > 300 GeV from Markarian 501 , 1996 .

[105]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[106]  M. Punch,et al.  Detection of TeV photons from the active galaxy Markarian 421 , 1992, Nature.

[107]  Frazer N. Owen,et al.  High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters , 1989 .

[108]  Martin J. Rees,et al.  Extended and Compact Extragalactic Radio Sources: Interpretation and Theory , 1978 .