On 퓁1 Data Fitting and Concave Regularization for Image Recovery

We propose a new family of cost functions for signal and image recovery: they are composed of $\ell_1$ data fitting terms combined with concave regularization. We exhibit when and how to employ such cost functions. Our theoretical results show that the minimizers of these cost functions are such that each one of their entries is involved either in an exact data fitting component or in a null component of the regularization part. This is a strong and particular property that can be useful for various image recovery problems. The minimization of such cost functions presents a computational challenge. We propose a fast minimization algorithm to solve this numerical problem. The experimental results show the effectiveness of the proposed algorithm. All illustrations and numerical experiments give a flavor of the possibilities offered by the minimizers of this new family of cost functions in solving specialized image processing tasks.

[1]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[2]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[3]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[4]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[5]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[6]  Eric L. Miller,et al.  Wavelet domain image restoration with adaptive edge-preserving regularization , 2000, IEEE Trans. Image Process..

[7]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[8]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[9]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[11]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[12]  Adrian S. Lewis,et al.  Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.

[13]  E. Wasserstrom Numerical Solutions by the Continuation Method , 1973 .

[14]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[15]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[16]  Mila Nikolova,et al.  Denoising of Frame Coefficients Using ℓ1 Data-Fidelity Term and Edge-Preserving Regularization , 2007, Multiscale Model. Simul..

[17]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[18]  Michael J. Black,et al.  On the unification of line processes, outlier rejection, and robust statistics with applications in early vision , 1996, International Journal of Computer Vision.

[19]  Mila Nikolova,et al.  Efficient Reconstruction of Piecewise Constant Images Using Nonsmooth Nonconvex Minimization , 2008, SIAM J. Imaging Sci..

[20]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[21]  Mila Nikolova,et al.  Markovian reconstruction using a GNC approach , 1999, IEEE Trans. Image Process..

[22]  Mads Nielsen,et al.  TV-L1 Optical Flow for Vector Valued Images , 2011, EMMCVPR.

[23]  Yufeng Liu,et al.  Variable Selection via A Combination of the L0 and L1 Penalties , 2007 .

[24]  Mila Nikolova,et al.  Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction , 2010, IEEE Transactions on Image Processing.

[25]  Mila Nikolova,et al.  Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..

[26]  Jinchi Lv,et al.  A unified approach to model selection and sparse recovery using regularized least squares , 2009, 0905.3573.

[27]  T. Chan,et al.  Edge-preserving and scale-dependent properties of total variation regularization , 2003 .

[28]  Mila Nikolova,et al.  Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares , 2005, Multiscale Model. Simul..

[29]  Julian Besag,et al.  Digital Image Processing: Towards Bayesian image analysis , 1989 .

[30]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[31]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[32]  Horst Bischof,et al.  A Duality Based Algorithm for TV- L 1-Optical-Flow Image Registration , 2007, MICCAI.

[33]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[34]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[35]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[36]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[37]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[38]  Rudolf Stollberger,et al.  DCE-MRI tumor registration by using TV-L1 optical flow , 2008 .

[39]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Nirmal K. Bose,et al.  Mathematical analysis of super-resolution methodology , 2003, IEEE Signal Process. Mag..

[41]  Yann Gousseau,et al.  The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..

[42]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[43]  Michael K. Ng,et al.  A Fast l1-TV Algorithm for Image Restoration , 2009, SIAM J. Sci. Comput..

[44]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[45]  Frédéric Lesage,et al.  The Application of Compressed Sensing for , 2009 .

[46]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.

[47]  ZhangYin,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009 .