Approximation Algorithms for Unit Disk Graphs

We consider several graph theoretic problems on unit disk graphs (Maximum Independent Set, Minimum Vertex Cover, and Minimum (Connected) Dominating Set) relevant to mobile ad hoc networks. We propose two new notions: thickness and density. If the thickness of a unit disk graph is bounded, then the mentioned problems can be solved in polynomial time. For unit disk graphs of bounded density, we present a new asymptotic fully-polynomial approximation scheme for the considered problems. The scheme for Minimum Connected Dominating Set is the first Baker-like asymptotic FPTAS for this problem. By adapting the proof, it implies e.g. an asymptotic FPTAS for Minimum Connected Dominating Set on planar graphs.

[1]  W. Kern,et al.  A new PTAS for maximum independent sets in unit disk graphs , 2003 .

[2]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[3]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[4]  Gary L. Miller,et al.  Density graphs and separators , 1991, SODA '91.

[5]  Subhash Suri,et al.  Label placement by maximum independent set in rectangles , 1998, CCCG.

[6]  Ding-Zhu Du,et al.  Connected Domination in Multihop Ad Hoc Wireless Networks , 2002, JCIS.

[7]  Johann Hurink,et al.  A Robust PTAS for Maximum Weight Independent Sets in Unit Disk Graphs , 2004, WG.

[8]  E. Bell,et al.  The Iterated Exponential Integers , 1938 .

[9]  Erik D. Demaine,et al.  Equivalence of local treewidth and linear local treewidth and its algorithmic applications , 2004, SODA '04.

[10]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[11]  David Eppstein,et al.  Separating Thickness from Geometric Thickness , 2002, GD.

[12]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[13]  L. Lovász Combinatorial problems and exercises , 1979 .

[14]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[15]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[16]  Harry B. Hunt,et al.  NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998, J. Algorithms.

[17]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[18]  Heribert Vollmer,et al.  The complexity of base station positioning in cellular networks , 2005, Discret. Appl. Math..

[19]  Wolfgang Maass,et al.  Approximation schemes for covering and packing problems in image processing and VLSI , 1985, JACM.

[20]  Peng-Jun Wan,et al.  Distributed Construction of Connected Dominating Set in Wireless Ad Hoc Networks , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[21]  Timothy M. Chan Polynomial-time approximation schemes for packing and piercing fat objects , 2003, J. Algorithms.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Frank Harary,et al.  Graph Theory , 2016 .

[24]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[25]  H. W. Becker Rooks and Rhymes , 1948 .

[26]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[27]  Tomomi Matsui,et al.  Approximation Algorithms for Maximum Independent Set Problems and Fractional Coloring Problems on Unit Disk Graphs , 1998, JCDCG.

[28]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[29]  Jirí Fiala,et al.  Geometric separation and exact solutions for the parameterized independent set problem on disk graphs , 2002, J. Algorithms.

[30]  Xiang-Yang Li,et al.  Simple heuristics and PTASs for intersection graphs in wireless ad hoc networks , 2002, DIALM '02.

[31]  Alexander Wolff,et al.  Point labeling with sliding labels , 1999, Comput. Geom..

[32]  Rodica Simion,et al.  Noncrossing partitions , 2000, Discret. Math..

[33]  Panos M. Pardalos,et al.  A New Heuristic for the Minimum Connected Dominating Set Problem on Ad Hoc Wireless Networks , 2004 .

[34]  Deying Li,et al.  A polynomial‐time approximation scheme for the minimum‐connected dominating set in ad hoc wireless networks , 2003, Networks.

[35]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[36]  Nabil H. Mustafa,et al.  Independent set of intersection graphs of convex objects in 2D , 2004, Comput. Geom..

[37]  Ewa Malesinska Graph-Theoretical Models for Frequency Assignment Problems , 1997 .

[38]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[39]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[40]  Peng-Jun Wan,et al.  Message-optimal connected dominating sets in mobile ad hoc networks , 2002, MobiHoc '02.

[41]  Klaus Jansen,et al.  Polynomial-time approximation schemes for geometric graphs , 2001, SODA '01.

[42]  Johann Hurink,et al.  A PTAS for the Minimum Dominating Set Problem in Unit Disk Graphs , 2005, WAOA.