A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development.

We have isolated and characterized a cDNA for a novel Per-Arnt/AhR-Sim basic helix-loop-helix (bHLH-PAS) factor that interacts with the Ah receptor nuclear translocator (Arnt), and its predicted amino acid sequence exhibits significant similarity to the hypoxia-inducible factor 1alpha (HIF1alpha) and Drosophila trachealess (dTrh) gene product. The HIF1alpha-like factor (HLF) encoded by the isolated cDNA bound the hypoxia-response element (HRE) found in enhancers of genes for erythropoietin, vascular endothelial growth factor (VEGF), and various glycolytic enzymes, and activated transcription of a reporter gene harboring the HRE. Although transcription-activating properties of HLF were very similar to those reported for HIF1alpha, their expression patterns were quite different between the two factors; HLF mRNA was most abundantly expressed in lung, followed by heart, liver, and other various organs under normoxic conditions, whereas HIF1alpha mRNA was ubiquitously expressed at much lower levels. In lung development around parturition, HLF mRNA expression was markedly enhanced, whereas that of HIF1alpha mRNA remained apparently unchanged at a much lower level. Moreover, HLF mRNA expression was closely correlated with that of VEGF mRNA. Whole mount in situ hybridization experiments demonstrated that HLF mRNA was expressed in vascular endothelial cells at the middle stages (9.5 and 10.5 days postcoitus) of mouse embryo development, where HIF1alpha mRNA was almost undetectable. The high expression level of HLF mRNA in the O2 delivery system of developing embryos and adult organs suggests that in a normoxic state, HLF regulates gene expression of VEGF, various glycolytic enzymes, and others driven by the HRE sequence, and may be involved in development of blood vessels and the tubular system of lung.

[1]  S. Nagata,et al.  pEF-BOS, a powerful mammalian expression vector. , 1990, Nucleic acids research.

[2]  G. Semenza,et al.  A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation , 1992, Molecular and cellular biology.

[3]  G. Breier,et al.  Coordinate expression of vascular endothelial growth factor receptor‐1 (fit‐1) and its ligand suggests a paracrine regulation of murine vascular development , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[4]  D. Faller,et al.  Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. , 1990, The Journal of clinical investigation.

[5]  D. Andrew,et al.  Tubulogenesis in Drosophila: a requirement for the trachealess gene product. , 1996, Genes & development.

[6]  G. Semenza,et al.  Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 , 1996, Molecular and cellular biology.

[7]  Y. Fujii‐Kuriyama,et al.  Possible function of Ah receptor nuclear translocator (Arnt) homodimer in transcriptional regulation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Norris,et al.  Hypoxia-induced Protein Binding to O2-responsive Sequences on the Tyrosine Hydroxylase Gene (*) , 1995, The Journal of Biological Chemistry.

[9]  O. Hankinson,et al.  Cloning of a factor required for activity of the Ah (dioxin) receptor. , 1991, Science.

[10]  M. Gassmann,et al.  Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor , 1996, Molecular and cellular biology.

[11]  G. Semenza,et al.  Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. , 1994, The Journal of biological chemistry.

[12]  D. Wilkinson In situ hybridization: a practical approach , 1998 .

[13]  S. Kourembanas,et al.  Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. , 1995, Circulation research.

[14]  C. Bradfield,et al.  Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. Ullrich,et al.  High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis , 1993, Cell.

[16]  G. Semenza,et al.  Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. , 1996, Genomics.

[17]  M. Gassmann,et al.  Nucleotide sequence, chromosomal assignment and mRNA expression of mouse hypoxia-inducible factor-1 alpha. , 1996, Biochemical and biophysical research communications.

[18]  D. Faller,et al.  Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. , 1991, The Journal of clinical investigation.

[19]  V. Chapman,et al.  Location of the mouse complement factor H gene (cfh) by FISH analysis and replication R-banding. , 1992, Cytogenetics and cell genetics.

[20]  D. Shima,et al.  The Mouse Gene for Vascular Endothelial Growth Factor , 1996, The Journal of Biological Chemistry.

[21]  G. Semenza,et al.  Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Georg Breier,et al.  Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo , 1992, Nature.

[23]  H. Dvorak,et al.  Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. , 1995, The American journal of pathology.

[24]  M. Kozak The scanning model for translation: an update , 1989, The Journal of cell biology.

[25]  H. Dvorak,et al.  Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. , 1992, Molecular biology of the cell.

[26]  O. Hankinson The aryl hydrocarbon receptor complex. , 1995, Annual review of pharmacology and toxicology.

[27]  A. Sica,et al.  A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter , 1995, The Journal of experimental medicine.

[28]  W. Rutter,et al.  Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. , 1979, Biochemistry.

[29]  O. Gotoh,et al.  Two new members of the murine Sim gene family are transcriptional repressors and show different expression patterns during mouse embryogenesis , 1996, Molecular and cellular biology.

[30]  B. Shilo,et al.  trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. , 1996, Genes & development.

[31]  E. Keshet,et al.  Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis , 1992, Nature.

[32]  N. Ferrara,et al.  Molecular and biological properties of the vascular endothelial growth factor family of proteins. , 1992, Endocrine reviews.

[33]  L. Williams,et al.  Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  B. Ebert,et al.  Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[35]  E. Keshet,et al.  Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. , 1994, Cardiovascular research.

[36]  O. Gotoh,et al.  cDNA Cloning and Tissue-Specific Expression of a Novel Basic Helix-Loop-Helix/PAS Factor (Arnt2) with Close Sequence Similarity to the Aryl Hydrocarbon Receptor Nuclear Translocator (Arnt) , 1996 .

[37]  Stephen T. Crews,et al.  The Drosophila single-minded gene encodes a helix-loop-helix protein that acts as a master regulator of CNS midline development , 1991, Cell.

[38]  O. Gotoh,et al.  cDNA cloning and structure of mouse putative Ah receptor. , 1992, Biochemical and biophysical research communications.

[39]  O. Gotoh,et al.  cDNA cloning of a murine homologue of Drosophila single-minded, its mRNA expression in mouse development, and chromosome localization. , 1996, Biochemical and biophysical research communications.