Bilevel Optimization for Calibrating Point Spread Functions in Blind Deconvolution
暂无分享,去创建一个
[1] Ronny Ramlau,et al. A non-iterative regularization approach to blind deconvolution , 2006 .
[2] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[3] Jian-Feng Cai,et al. Blind motion deblurring using multiple images , 2009, J. Comput. Phys..
[4] Michael Hintermüller,et al. A bundle-free implicit programming approach for a class of elliptic MPECs in function space , 2016, Mathematical Programming.
[5] ADAM B. LEVY,et al. Solution Sensitivity from General Principles , 2001, SIAM J. Control. Optim..
[6] Mostafa Kaveh,et al. A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..
[7] Bethany L. Nicholson,et al. Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.
[8] Jean-Luc Starck,et al. Deconvolution and Blind Deconvolution in Astronomy , 2007 .
[9] Alexander Shapiro,et al. Sensitivity Analysis of Parameterized Variational Inequalities , 2005, Math. Oper. Res..
[10] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[11] Deepa Kundur,et al. Blind image deconvolution revisited , 1996 .
[12] R. Tyrrell Rockafellar,et al. Robinson’s implicit function theorem and its extensions , 2008, Math. Program..
[13] Alfred S. Carasso,et al. Apex Blind Deconvolution of Color Hubble Space Telescope Imagery and Other Astronomical Data , 2006 .
[14] Jirí V. Outrata,et al. A Generalized Mathematical Program with Equilibrium Constraints , 2000, SIAM J. Control. Optim..
[15] Michael Hintermüller,et al. Mathematical Programs with Complementarity Constraints in Function Space: C- and Strong Stationarity and a Path-Following Algorithm , 2009, SIAM J. Optim..
[16] Alfred S. Carasso,et al. False Characteristic Functions and Other Pathologies in Variational Blind Deconvolution. A Method of Recovery , 2009, SIAM J. Appl. Math..
[17] Stefan Scholtes,et al. Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..
[18] Gjlles Aubert,et al. Mathematical problems in image processing , 2001 .
[19] K. Kunisch,et al. An active set strategy based on the augmented Lagrangian formulation for image restoration , 1999 .
[20] Stefan Scholtes,et al. Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..
[21] Tony F. Chan,et al. Total variation blind deconvolution , 1998, IEEE Trans. Image Process..
[22] Alfred S. Carasso,et al. Direct Blind Deconvolution , 2001, SIAM J. Appl. Math..
[23] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[24] C. Schönlieb,et al. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization , 2013 .
[25] Michael Hintermüller,et al. A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors , 2013, Computational Optimization and Applications.
[26] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[27] H. V. Sorensen,et al. An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..
[28] Masao Fukushima,et al. A Globally Convergent Sequential Quadratic Programming Algorithm for Mathematical Programs with Linear Complementarity Constraints , 1998, Comput. Optim. Appl..
[29] Boris Polyak,et al. B.S. Mordukhovich. Variational Analysis and Generalized Differentiation. I. Basic Theory, II. Applications , 2009 .
[30] Luís B. Almeida,et al. Blind and Semi-Blind Deblurring of Natural Images , 2010, IEEE Transactions on Image Processing.
[31] Karl Kunisch,et al. Total Bounded Variation Regularization as a Bilaterally Constrained Optimization Problem , 2004, SIAM J. Appl. Math..
[32] Wotao Yin,et al. Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[33] Lin He,et al. Blind deconvolution using TV regularization and Bregman iteration , 2005, Int. J. Imaging Syst. Technol..
[34] K. Egiazarian,et al. Blind image deconvolution , 2007 .
[35] Alfred S. Carasso. The APEX Method in Image Sharpening and the Use of Low Exponent L[e-acute]vy Stable Laws , 2003, SIAM J. Appl. Math..
[36] Stuart Jefferies,et al. A computational method for the restoration of images with an unknown, spatially-varying blur. , 2006, Optics express.
[37] Tony F. Chan,et al. Image processing and analysis , 2005 .
[38] Anat Levin,et al. Blind Motion Deblurring Using Image Statistics , 2006, NIPS.
[39] E. A. Nurminskii. Convergence of the gradient projection method , 1973 .
[40] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[41] Deepa Kundur,et al. Blind Image Deconvolution , 2001 .
[42] Michal Kočvara,et al. Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .
[43] D. A. Fish,et al. Blind deconvolution by means of the Richardson-Lucy algorithm. , 1995 .
[44] Jiaya Jia,et al. High-quality motion deblurring from a single image , 2008, SIGGRAPH 2008.
[45] Sven Leyffer,et al. Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..
[46] Otmar Scherzer,et al. Regularization Methods for Blind Deconvolution and Blind Source Separation Problems , 2001, Math. Control. Signals Syst..
[47] Jane J. Ye,et al. Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .
[48] Tony F. Chan,et al. Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .
[49] Yasuyuki Matsushita,et al. Removing Non-Uniform Motion Blur from Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[50] Michael Hintermüller,et al. Nonconvex TVq-Models in Image Restoration: Analysis and a Trust-Region Regularization-Based Superlinearly Convergent Solver , 2013, SIAM J. Imaging Sci..
[51] Michael Hintermüller,et al. An Infeasible Primal-Dual Algorithm for Total Bounded Variation-Based Inf-Convolution-Type Image Restoration , 2006, SIAM J. Sci. Comput..
[52] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[53] S. M. Robinson. Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity , 1987 .
[54] Karl Kunisch,et al. A Bilevel Optimization Approach for Parameter Learning in Variational Models , 2013, SIAM J. Imaging Sci..
[55] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[56] Jane J. Ye,et al. Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..