Near-infrared photocatalysis based on YF3 : Yb3+,Tm3+/TiO2 core/shell nanoparticles.

We report the novel near-infrared (NIR) photocatalysis of YF(3) : Yb(3+),Tm(3+)/TiO(2) core/shell nanoparticles. The core/shell nanoparticles show photocatalytic activity under the NIR irradiation. This study demonstrates that the NIR energy can be used as the driving source for photocatalysis besides the UV and visible energy.

[1]  B. N. Murthy,et al.  Characterization of Mo Doped TiO2 and its Enhanced Photo Catalytic Activity Under Visible Light , 2008 .

[2]  J. Weber,et al.  UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension , 2006 .

[3]  Lili Wang,et al.  Synthesis, Growth Mechanism, and Tunable Upconversion Luminescence of Yb3+/Tm3+-Codoped YF3 Nanobundles , 2008 .

[4]  Suwen Liu,et al.  Visible Light Photocatalytic Activities of TiO2 Nanocrystals Doped with Upconversion Luminescence Agent , 2008 .

[5]  N. Keller,et al.  Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles. , 2009, Angewandte Chemie.

[6]  A. Datye,et al.  Titania Coatings on Monodisperse Silica Spheres (Characterization Using 2-Propanol Dehydration and TEM) , 1996 .

[7]  Yan Wang,et al.  Enhanced ultraviolet up-conversion emissions of Tm3+/Yb3+ codoped YF3 nanocrystals , 2008 .

[8]  Lili Wang,et al.  Enhancement of violet and ultraviolet upconversion emissions in Yb3+/Er3+-codoped YF3 nanocrystals , 2008 .

[9]  Rui Xu,et al.  Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation , 2008 .

[10]  Lili Wang,et al.  Size-dependent upconversion luminescence in YF3:Yb3+/Tm3+ nanobundles , 2008 .

[11]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[12]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[13]  Lili Wang,et al.  Synthesis and upconversion luminescence properties of YF3:Yb3+/Tm3+ octahedral nanocrystals , 2009 .

[14]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[15]  Zhichun Si,et al.  SOLAR PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE IN CARBON-DOPED TIO2 NANOPARTICLES SUSPENSION , 2008 .

[16]  Yoshio Kobayashi,et al.  Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles. , 2004, Journal of colloid and interface science.

[17]  Chenghua Sun,et al.  Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. , 2008, Angewandte Chemie.

[18]  P. Maruthamuthu,et al.  Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors , 1995 .

[19]  P. Dong,et al.  Preparation of nearly monodisperse multiply coated submicrospheres with a high refractive index. , 2003, Journal of colloid and interface science.

[20]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[21]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[22]  X. Wang,et al.  Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. , 2006, The journal of physical chemistry. B.

[23]  M. Swaminathan,et al.  Solar photocatalytic degradation of a reactive azo dye in TiO2-suspension , 2004 .

[24]  T. Ring,et al.  Nucleation and growth of monosized titania powders from alcohol solution , 1986 .