AM1* parameters for phosphorus, sulfur and chlorine
暂无分享,去创建一个
[1] A. Wachters,et al. Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .
[2] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[3] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[4] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[5] J. Pople,et al. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .
[6] W. Lipscomb,et al. Self‐consistent‐field wavefunctions for complex molecules. The approximation of partial retention of diatomic differential overlap , 1973 .
[7] P. Jeffrey Hay,et al. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .
[8] M. Dewar,et al. Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .
[9] A. D. McLean,et al. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .
[10] J. Pople,et al. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .
[11] Eamonn F. Healy,et al. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .
[12] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[13] Hermann Stoll,et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .
[14] J. Stewart. Optimization of parameters for semiempirical methods II. Applications , 1989 .
[15] J. Stewart. Optimization of parameters for semiempirical methods I. Method , 1989 .
[16] L. Curtiss,et al. Compact contracted basis sets for third‐row atoms: Ga–Kr , 1990 .
[17] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[18] L. Radom,et al. Extension of Gaussian‐1 (G1) theory to bromine‐containing molecules , 1991 .
[19] Walter Thiel,et al. Extension of MNDO to d Orbitals: Parameters and Results for the Halogens , 1992 .
[20] Walter Thiel,et al. Extension of MNDO to d orbitals: parameters and results for silicon , 1994 .
[21] M. Frisch,et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .
[22] Walter Thiel,et al. Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group , 1996 .
[23] James J. P. Stewart,et al. Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations , 1996 .
[24] W. Thiel,et al. Extension of the MNDO formalism to , 1996 .
[25] Axel D. Becke,et al. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing , 1996 .
[26] Ranbir Singh,et al. J. Mol. Struct. (Theochem) , 1996 .
[27] Calculation of the geometry of a small protein using semiempirical methods , 1997 .
[28] Bernd Beck,et al. Enhanced 3D-Databases: A Fully Electrostatic Database of AM1-Optimized Structures , 1998, J. Chem. Inf. Comput. Sci..
[30] Notker Rösch,et al. AM1/d Parameters for Molybdenum , 2000 .
[31] Timothy Clark,et al. Quo Vadis semiempirical MO-theory? , 2000 .
[32] K M Merz,et al. New developments in applying quantum mechanics to proteins. , 2001, Current opinion in structural biology.
[33] Ambiphilie, ein charakteristisches Reaktivitätsprinzip π-gebundener Phosphorheterocyclen† , 2002 .
[34] Kenneth M. Merz,et al. Sodium parameters for AM1 and PM3 optimized using a modified genetic algorithm , 2002 .
[35] Brent A. Gregersen,et al. Hybrid QM/MM study of thio effects in transphosphorylation reactions. , 2003, Journal of the American Chemical Society.