AM1* parameters for phosphorus, sulfur and chlorine

An extension of the AM1 semiempirical molecular orbital technique, AM1*, is introduced. AM1* uses AM1 parameters and theory unchanged for the elements H, C, N, O and F. The elements P, S and Cl have been reparameterized using an additional set of d orbitals in the basis set and with two-center core–core parameters, rather than the Gaussian functions used to modify the core–core potential in AM1. Voityuk and Rösch’s AM1(d) parameters have been adopted unchanged for AM1* with the exception that new core–core parameters are defined for Mo–P, Mo–S and Mo–Cl interactions. Thus, AM1* gives identical results to AM1 for compounds with only H, C, N, O, and F, AM1(d) for compounds containing Mo, H, C, N, O and F only, but differs for molybdenum compounds containing P, S or Cl. The performance and typical errors of AM1* are discussed.

[1]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[2]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[3]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[4]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[5]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[6]  W. Lipscomb,et al.  Self‐consistent‐field wavefunctions for complex molecules. The approximation of partial retention of diatomic differential overlap , 1973 .

[7]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[8]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[9]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[10]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[11]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[12]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[13]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[14]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[15]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[16]  L. Curtiss,et al.  Compact contracted basis sets for third‐row atoms: Ga–Kr , 1990 .

[17]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[18]  L. Radom,et al.  Extension of Gaussian‐1 (G1) theory to bromine‐containing molecules , 1991 .

[19]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Halogens , 1992 .

[20]  Walter Thiel,et al.  Extension of MNDO to d orbitals: parameters and results for silicon , 1994 .

[21]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[22]  Walter Thiel,et al.  Extension of MNDO to d Orbitals: Parameters and Results for the Second-Row Elements and for the Zinc Group , 1996 .

[23]  James J. P. Stewart,et al.  Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations , 1996 .

[24]  W. Thiel,et al.  Extension of the MNDO formalism to , 1996 .

[25]  Axel D. Becke,et al.  Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing , 1996 .

[26]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[27]  Calculation of the geometry of a small protein using semiempirical methods , 1997 .

[28]  Bernd Beck,et al.  Enhanced 3D-Databases: A Fully Electrostatic Database of AM1-Optimized Structures , 1998, J. Chem. Inf. Comput. Sci..

[29]  Guidelines for preservation of methodological choices in the publication of computational results: B. Semiempirical electronic structure calculations(Technical report) , 2000 .

[30]  Notker Rösch,et al.  AM1/d Parameters for Molybdenum , 2000 .

[31]  Timothy Clark,et al.  Quo Vadis semiempirical MO-theory? , 2000 .

[32]  K M Merz,et al.  New developments in applying quantum mechanics to proteins. , 2001, Current opinion in structural biology.

[33]  Ambiphilie, ein charakteristisches Reaktivitätsprinzip π-gebundener Phosphorheterocyclen† , 2002 .

[34]  Kenneth M. Merz,et al.  Sodium parameters for AM1 and PM3 optimized using a modified genetic algorithm , 2002 .

[35]  Brent A. Gregersen,et al.  Hybrid QM/MM study of thio effects in transphosphorylation reactions. , 2003, Journal of the American Chemical Society.