Seismic Imaging and Inversion: Application of Linear Inverse Theory

Extracting information from seismic data requires knowledge of seismic wave propagation and reflection. The commonly used method involves solving linearly for a reflectivity at every point within the Earth, but this book follows an alternative approach which invokes inverse scattering theory. By developing the theory of seismic imaging from basic principles, the authors relate the different models of seismic propagation, reflection and imaging - thus providing links to reflectivity-based imaging on the one hand and to nonlinear seismic inversion on the other. The comprehensive and physically complete linear imaging foundation developed presents new results at the leading edge of seismic processing for target location and identification. This book serves as a fundamental guide to seismic imaging principles and algorithms and their foundation in inverse scattering theory, and is a valuable resource for working geoscientists, scientific programmers and theoretical physicists.

[1]  Robert H. Stolt,et al.  Seismic data mapping and reconstruction , 2002 .

[2]  G. Lambaré,et al.  Can we quantitatively image complex structures with rays , 2000 .

[3]  Jack K. Cohen,et al.  True-amplitude transformation to zero offset of data from curved reflectors , 1999 .

[4]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[5]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[6]  P. Anno,et al.  Spectral decomposition of seismic data with continuous-wavelet transform , 2005 .

[7]  Jack K. Cohen,et al.  Two and one‐half dimensional Born inversion with an arbitrary reference , 1987 .

[8]  Paul Sava,et al.  Prestack residual migration in the frequency domain , 2003 .

[9]  John Sherwood,et al.  Depth migration before stack , 1980 .

[10]  Tariq Alkhalifah,et al.  Straight-rays redatuming: A fast and robust alternative to wave-equation-based datuming , 2006 .

[11]  Piero Sguazzero,et al.  Migration of seismic data by phase-shift plus interpolation: Geophysics , 1984 .

[12]  Arthur B. Weglein,et al.  Green’s theorem as a comprehensive framework for data reconstruction, regularization, wavefield separation, seismic interferometry, and wavelet estimation: A tutorial , 2009 .

[13]  E. Baysal,et al.  Reverse time migration , 1983 .

[14]  Yaxun Tang Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian , 2009 .

[15]  Lúcio T. Santos,et al.  2.5-D true‐amplitude Kirchhoff migration to zero offset in laterally inhomogeneous media , 1998 .

[16]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.

[17]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[18]  Christopher L. Liner,et al.  Least-squares DMO and migration , 2000 .

[19]  Stéphane Operto,et al.  3D ray+Born migration/inversion—Part 1: Theory , 2003 .

[20]  B. Biondi,et al.  Target-oriented joint least-squares migration/inversion of time-lapse seismic data sets , 2010 .

[21]  Jenö Gazdag,et al.  Wave equation migration with the phase-shift method , 1978 .

[22]  Wafik B. Beydoun,et al.  The paraxial ray method , 1987 .

[23]  Sergey Fomel,et al.  Velocity continuation and the anatomy of residual prestack time migration , 2003 .

[24]  C. H. Chapman,et al.  A new method for computing synthetic seismograms , 1978 .

[25]  N. Whitmore Iterative Depth Migration By Backward Time Propagation , 1983 .

[26]  Martin Tygel,et al.  Pulse distortion in depth migration , 1994 .

[27]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[28]  G. Nolet Book reviewSeismic migration. Imaging of acoustic energy by wavefield extrapolation. A: theoretical aspects: A.J. Berkhout. Developments in Solid Earth Geophysics, 14A. Elsevier, Amsterdam, 1982, 2nd revised , 1985 .

[29]  Norman Bleistein,et al.  Migration velocity analysis; theory and an iterative algorithm , 1995 .

[30]  Jack K. Cohen,et al.  Three‐dimensional Born inversion with an arbitrary reference , 1986 .

[31]  A Frequency-Dip Formulation of Wave-Theoretic Migration in Stratified Media , 1980 .

[32]  Jack K. Cohen,et al.  An Inverse Method for Determining Small Variations in Propagation Speed , 1977 .

[33]  Arthur B. Weglein,et al.  Migration and inversion of seismic data , 1985 .

[34]  Karl Schleicher,et al.  True-amplitude imaging and dip moveout , 1993 .

[35]  Norman Bleistein,et al.  Mathematical Methods for Wave Phenomena , 1984 .

[36]  Martin Tygel,et al.  3-D true‐amplitude finite‐offset migration , 1993 .

[37]  A. J. Berkhout Wave field extrapolation techniques in seismic migration; a tutorial , 1981 .

[38]  Joseph B. Keller,et al.  Rays, waves and asymptotics , 1978 .

[39]  R. Newton Scattering theory of waves and particles , 1966 .

[40]  Matthias Born,et al.  Principles of Optics: Electromagnetic Theory of Propa-gation, Interference and Di raction of Light , 1999 .

[41]  William A. Schneider,et al.  INTEGRAL FORMULATION FOR MIGRATION IN TWO AND THREE DIMENSIONS , 1978 .

[42]  C. H. Dix SEISMIC VELOCITIES FROM SURFACE MEASUREMENTS , 1955 .

[43]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[44]  Sebastiano Foti,et al.  Laterally constrained inversion of ground roll from seismic reflection records , 2009 .

[45]  Maarten V. de Hoop,et al.  Generalized Radon transform inversions for reflectivity in anisotropic elastic media , 1997 .

[46]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[47]  Yu Zhang,et al.  One-step extrapolation method for reverse time migration , 2009 .

[48]  Robert W. Clayton,et al.  A Born-WKBJ inversion method for acoustic reflection data , 1981 .

[49]  R. T. Shuey,et al.  A simplification of the Zoeppritz equations , 1985 .

[50]  A. Berkhout Seismic Resolution: A Quantitative Analysis of Resolving Power of Acoustical Echo Techniques , 1984 .

[51]  Robert H. Stolt,et al.  Seismic migration : theory and practice , 1986 .

[52]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[53]  Luigi Sambuelli,et al.  Waterborne GPR survey for estimating bottom-sediment variability: A survey on the Po River, Turin, Italy , 2009 .

[54]  Jon F. Claerbout,et al.  The migration of common midpoint slant stacks , 1984 .

[55]  S. Raz Three-dimensional velocity profile inversion from finite-offset scattering data , 1981 .

[56]  F. Rocca,et al.  Residual migration; applications and limitations , 1985 .

[57]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[58]  R. Coates,et al.  Generalized Born scattering in anisotropic media , 1994 .

[59]  Martin Tygel,et al.  Seismic True-Amplitude Imaging , 2007 .

[60]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[61]  Paul Sava,et al.  Wave-equation migration velocity analysis by focusing diffractions and reflections , 2005 .

[62]  J. Claerbout Toward a unified theory of reflector mapping , 1971 .