Compactness results in Symplectic Field Theory
暂无分享,去创建一个
E. Zehnder | H. Hofer | Y. Eliashberg | F. Bourgeois | K. Wysocki | K. Wysocki | Y. Eliashberg | H. Hofer
[1] E. Zehnder,et al. Finite energy foliations of tight three-spheres and Hamiltonian dynamics , 2003 .
[2] John B. Etnyre,et al. Legendrian Submanifolds in $R^{2n+1}$ and Contact Homology , 2002, math/0210124.
[3] E. Zehnder,et al. Finite energy cylinders of small area , 2002, Ergodic Theory and Dynamical Systems.
[4] F. Bourgeois. A Morse-Bott approach to contact homology , 2002 .
[5] Jun Li. A Degeneration Formula of GW-Invariants , 2001, math/0110113.
[6] E. Zehnder,et al. The asymptotic behavior of a finite energy plane , 2001 .
[7] Thomas H. Parker,et al. The symplectic sum formula for Gromov–Witten invariants , 2000, 1510.06943.
[8] H. Hofer,et al. Introduction to Symplectic Field Theory , 2000, math/0010059.
[9] Thomas H. Parker,et al. Relative Gromov-Witten invariants , 1999, math/9907155.
[10] E. Zehnder,et al. Properties of Pseudoholomorphic Curves in Symplectizations III: Fredholm Theory , 1999 .
[11] E. Zehnder,et al. The dynamics on three-dimensional strictly convex energy surfaces , 1998 .
[12] E. Zehnder,et al. Correction to “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics” , 1998 .
[13] An-Min Li,et al. Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds , 1998, math/9803036.
[14] C. Thomas. Contact and symplectic geometry , 1996 .
[15] E. Zehnder,et al. Properties of pseudoholomorphic curves in symplectisations. I : asymptotics , 1996 .
[16] E. Zehnder,et al. Properties of Pseudoholomorphic Curves in Symplectisations Iv: Asymptotics with Degeneracies , 1996 .
[17] D. Salamon,et al. Lagrangian intersections in Contact geometry , 1995 .
[18] Eduard Zehnder,et al. Symplectic Invariants and Hamiltonian Dynamics , 1994 .
[19] R. Ye. Gromov’s compactness theorem for pseudo holomorphic curves , 1994 .
[20] D. Salamon,et al. J-Holomorphic Curves and Quantum Cohomology , 1994 .
[21] Marie-Paule Muller. Gromov’s Schwarz lemma as an estimate of the gradient for holomorphic curves , 1994 .
[22] H. Hofer. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three , 1993 .
[23] H. Hofer,et al. The weinstein conjecture in the presence of holomorphic spheres , 1992 .
[24] Claude Viterbo,et al. An introduction to symplectic topology , 1991 .
[25] A. Floer,et al. The unregularized gradient flow of the symplectic action , 1988 .
[26] A. Floer,et al. Morse theory for Lagrangian intersections , 1988 .
[27] S. Wolpert. ON THE WEIL-PETERSSON GEOMETRY OF THE MODULI SPACE OF CURVES , 1985 .
[28] M. Gromov. Pseudo holomorphic curves in symplectic manifolds , 1985 .
[29] D. Mumford,et al. The irreducibility of the space of curves of given genus , 1969 .