Observables in quantum gravity
暂无分享,去创建一个
[1] A. Miković. Quantum field theory of spin networks , 2001, gr-qc/0102110.
[2] Alejandro Perez,et al. Finiteness of a spinfoam model for Euclidean quantum general relativity , 2000, gr-qc/0011058.
[3] C. Rovelli,et al. 3+1 spinfoam model of quantum gravity with spacelike and timelike components , 2000, gr-qc/0011037.
[4] C. Rovelli,et al. Spin foam model for Lorentzian general relativity , 2000, gr-qc/0009021.
[5] C. Rovelli,et al. A spin foam model without bubble divergences , 2000, gr-qc/0006107.
[6] C. Rovelli,et al. Spacetime as a Feynman diagram: the connection formulation , 2000, gr-qc/0002095.
[7] C. Rovelli. The century of the incomplete revolution: Searching for general relativistic quantum field theory , 1999, hep-th/9910131.
[8] R. Pietri,et al. Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space , 1999, hep-th/9907154.
[9] A. Ashtekar,et al. Osterwalder-Schrader Reconstruction and Diffeomorphism Invariance , 1999 .
[10] L. Crane,et al. A Lorentzian signature model for quantum general relativity , 1999, gr-qc/9904025.
[11] K. Krasnov,et al. Spin Foam Models and the Classical Action Principle , 1998, hep-th/9807092.
[12] L. Smolin,et al. Quantum geometry with intrinsic local causality , 1997, gr-qc/9712067.
[13] L. Crane,et al. Relativistic spin networks and quantum gravity , 1997, gr-qc/9709028.
[14] C. Rovelli. Quantum gravity as a “sum over surfaces” , 1997 .
[15] L. Smolin,et al. Causal evolution of spin networks , 1997, gr-qc/9702025.
[16] C. Rovelli,et al. 'Sum over surfaces' form of loop quantum gravity , 1996, gr-qc/9612035.
[17] J. Dubochet,et al. Geometry and physics of knots , 1996, Nature.
[18] M. Atiyah. Quantum theory and geometry , 1995 .
[19] Rovelli,et al. Spin networks and quantum gravity. , 1995, Physical review. D, Particles and fields.
[20] A. Ashtekar,et al. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom , 1995, gr-qc/9504018.
[21] M. Reisenberger,et al. Worldsheet formulations of gauge theories and gravity , 1994, gr-qc/9412035.
[22] C. Rovelli,et al. Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.
[23] S. Hawking. The path-integral approach to quantum gravity , 1993 .
[24] C. Rovelli. Ashtekar formulation of general relativity and loop space nonperturbative quantum gravity: A Report , 1991 .
[25] M. Atiyah. The Geometry and Physics of Knots , 1990 .
[26] Rovelli,et al. Knot theory and quantum gravity. , 1988, Physical review letters.
[27] Carlo Rovelli,et al. Loop space representation of quantum general relativity , 1988 .
[28] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[29] C. Teitelboim. Proper time approach to the quantization of the gravitational field , 1980 .
[30] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .
[31] C. Misner. Feynman Quantization of General Relativity , 1957 .
[32] A. S. Wightman,et al. Quantum Field Theory in Terms of Vacuum Expectation Values , 1956 .
[33] L. Kauffman. The Interface of Knots and Physics , 1996 .
[34] A. Ashtekar,et al. Loops, knots, gauge theories and quantum gravity , 1996 .
[35] A. Wightman,et al. PCT, spin and statistics, and all that , 1964 .
[36] L. Ryder,et al. Quantum Field Theory , 2001, Foundations of Modern Physics.