Overlapping variance estimators for simulations

We examine properties of overlapped versions of the standardized time series area and Cramer-von Mises estimators for the variance parameter of a stationary stochastic process, e.g., a steady-state simulation output process. We find that the overlapping estimators have the same bias properties as, but lower variance than, their nonoverlapping counterparts; the new estimators also perform well against the benchmark batch means estimator. We illustrate our findings with analytical and Monte Carlo examples.

[1]  Ward Whitt,et al.  Estimating the asymptotic variance with batch means , 1991, Oper. Res. Lett..

[2]  Halim Damerdji,et al.  Strong Consistency of the Variance Estimator in Steady-State Simulation Output Analysis , 1994, Math. Oper. Res..

[3]  David Goldsman,et al.  Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations , 2001, INFORMS J. Comput..

[4]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[5]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[6]  C. Read,et al.  Handbook of the Normal Distribution, 2nd Edition. , 1998 .

[7]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[8]  Bruce W. Schmeiser,et al.  Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators , 1993, Oper. Res..

[9]  Halim Damerdji,et al.  Mean-Square Consistency of the Variance Estimator in Steady-State Simulation Output Analysis , 1995, Oper. Res..

[10]  L. Schruben,et al.  Properties of standardized time series weighted area variance estimators , 1990 .

[11]  Michel Loève,et al.  Probability Theory I , 1977 .

[12]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[13]  GoldsmanDavid,et al.  Confidence intervals using orthonormally weighted standardized time series , 1999 .

[14]  David Goldsman,et al.  Confidence intervals using orthonormally weighted standardized time series , 1999, TOMC.

[15]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[16]  Bruce W. Schmeiser,et al.  Asymptotic and finite-sample correlations between OBM estimators , 1993, WSC '93.

[17]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[18]  Peter D. Welch,et al.  On the relationship between batch means, overlapping means and spectral estimation , 1987, WSC '87.

[19]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[20]  Linus Schrage,et al.  A guide to simulation , 1983 .

[21]  J. Patel,et al.  Handbook of the normal distribution , 1983 .

[22]  H. Damerdji,et al.  Strong consistency and other properties of the spectral variance estimator , 1991 .

[23]  James R. Wilson,et al.  Convergence Properties of the Batch Means Method for Simulation Output Analysis , 2001, INFORMS J. Comput..

[24]  B. Schmeiser,et al.  Optimal mean-squared-error batch sizes , 1995 .

[25]  Keebom Kang,et al.  Cramér-von Mises variance estimators for simulations , 1991, WSC '91.

[26]  Lee W. Schruben,et al.  Note-New Confidence Interval Estimators Using Standardized Time Series , 1990 .