The neuronal encoding of information in the brain

We describe the results of quantitative information theoretic analyses of neural encoding, particularly in the primate visual, olfactory, taste, hippocampal, and orbitofrontal cortex. Most of the information turns out to be encoded by the firing rates of the neurons, that is by the number of spikes in a short time window. This has been shown to be a robust code, for the firing rate representations of different neurons are close to independent for small populations of neurons. Moreover, the information can be read fast from such encoding, in as little as 20 ms. In quantitative information theoretic studies, only a little additional information is available in temporal encoding involving stimulus-dependent synchronization of different neurons, or the timing of spikes within the spike train of a single neuron. Feature binding appears to be solved by feature combination neurons rather than by temporal synchrony. The code is sparse distributed, with the spike firing rate distributions close to exponential or gamma. A feature of the code is that it can be read by neurons that take a synaptically weighted sum of their inputs. This dot product decoding is biologically plausible. Understanding the neural code is fundamental to understanding not only how the cortex represents, but also processes, information.

[1]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[2]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[3]  J. Lisman,et al.  Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. , 2000, Journal of neurophysiology.

[4]  Edmund T. Rolls,et al.  Glutamate, obsessive–compulsive disorder, schizophrenia, and the stability of cortical attractor neuronal networks , 2012, Pharmacology Biochemistry and Behavior.

[5]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[6]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[7]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[8]  G. Winocur,et al.  The cognitive neuroscience of remote episodic, semantic and spatial memory , 2006, Current Opinion in Neurobiology.

[9]  E. Rolls,et al.  The Neurophysiology of Backward Visual Masking: Information Analysis , 1999, Journal of Cognitive Neuroscience.

[10]  B J Richmond,et al.  Neuronal codes: reading them and learning how their structure influences network organization. , 1997, Bio Systems.

[11]  Morris Moscovitch,et al.  Retrieval of autobiographical memory in Alzheimer's disease: Relation to volumes of medial temporal lobe and other structures , 2005, Hippocampus.

[12]  Gustavo Deco,et al.  Optimal Information Transfer in the Cortex through Synchronization , 2010, PLoS Comput. Biol..

[13]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[14]  L. Optican,et al.  Role of inferior temporal neurons in visual memory. I. Temporal encoding of information about visual images, recalled images, and behavioral context. , 1992, Journal of neurophysiology.

[15]  Barry J. Richmond,et al.  Information flow and temporal coding in primate pattern vision , 1995, Journal of Computational Neuroscience.

[16]  Markus Siegel,et al.  Phase-dependent neuronal coding of objects in short-term memory , 2009, Proceedings of the National Academy of Sciences.

[17]  Alessandro Treves,et al.  How Informative Are Spatial CA3 Representations Established by the Dentate Gyrus? , 2009, PLoS Comput. Biol..

[18]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[19]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[20]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[21]  J. O'Doherty,et al.  Decoding the neural substrates of reward-related decision making with functional MRI , 2007, Proceedings of the National Academy of Sciences.

[22]  Xin Wang,et al.  Exploring the Function of Neural Oscillations in Early Sensory Systems , 2009, Frontiers in neuroscience.

[23]  E. Rolls,et al.  Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons , 2001, Network.

[24]  M. Tovée,et al.  Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex , 1995 .

[25]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[26]  J. O’Keefe,et al.  Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells , 2005, Hippocampus.

[27]  A. Treves,et al.  Theta-paced flickering between place-cell maps in the hippocampus , 2011, Nature.

[28]  E. Rolls,et al.  Prediction of subjective affective state from brain activations. , 2009, Journal of neurophysiology.

[29]  Arthur Gretton,et al.  Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information , 2008, The Journal of Neuroscience.

[30]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[32]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[33]  Pascale Piolino,et al.  Autobiographical memory and autonoetic consciousness: triple dissociation in neurodegenerative diseases. , 2003, Brain : a journal of neurology.

[34]  Barry J. Richmond,et al.  Stochasticity, spikes and decoding: sufficiency and utility of order statistics , 2009, Biological Cybernetics.

[35]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[36]  Nicolas Brunel,et al.  Sensory neural codes using multiplexed temporal scales , 2010, Trends in Neurosciences.

[37]  Edmund T. Rolls,et al.  Cortical Attractor Network Dynamics with Diluted Connectivity , 2011 .

[38]  Stefano Panzeri,et al.  Information in the Neuronal Representation of Individual Stimuli in the Primate Temporal Visual Cortex , 1997, Journal of Computational Neuroscience.

[39]  Christian Keysers,et al.  Visual masking and RSVP reveal neural competition , 2002, Trends in Cognitive Sciences.

[40]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[41]  E. Rolls,et al.  The Metric Content of Spatial Views as Represented in the Primate Hippocampus , 1998 .

[42]  Fred Rieke,et al.  Coding Efficiency and Information Rates in Sensory Neurons , 1993 .

[43]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[44]  Stefano Panzeri,et al.  The Upward Bias in Measures of Information Derived from Limited Data Samples , 1995, Neural Computation.

[45]  Edmund T Rolls,et al.  Consciousness absent and present: a neurophysiological exploration. , 2004, Progress in brain research.

[46]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[47]  E T Rolls,et al.  Correlations and the encoding of information in the nervous system , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[49]  Edmund T. Rolls,et al.  The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain , 1990 .

[50]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[51]  Emad N. Eskandar,et al.  Measuring Natural Neural Processing with Artificial Neural Networks , 1992, Int. J. Neural Syst..

[52]  T. Shallice,et al.  Modality-Specific Operations in Semantic Dementia , 1997, Cortex.

[53]  Xiao-Jing Wang Decision Making in Recurrent Neuronal Circuits , 2008, Neuron.

[54]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[55]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[56]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[57]  Zoltan Nadasdy,et al.  Binding by Asynchrony: The Neuronal Phase Code , 2010, Front. Neurosci..

[58]  A Treves,et al.  Representational capacity of a set of independent neurons. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[60]  Treves,et al.  Graded-response neurons and information encodings in autoassociative memories. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[61]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[62]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[63]  Stefano Panzeri,et al.  On Decoding the Responses of a Population of Neurons from Short Time Windows , 1999, Neural Computation.

[64]  Bruce L. McNaughton,et al.  An Information-Theoretic Approach to Deciphering the Hippocampal Code , 1992, NIPS.

[65]  E. Rolls,et al.  Computational models of schizophrenia and dopamine modulation in the prefrontal cortex , 2008, Nature Reviews Neuroscience.

[66]  Edmund T Rolls,et al.  Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala. , 2005, Chemical senses.

[67]  Kazuyuki Aihara,et al.  Ergodicity of Spike Trains: When Does Trial Averaging Make Sense? , 2003, Neural Computation.

[68]  E. Rolls The representation of information about faces in the temporal and frontal lobes , 2007, Neuropsychologia.

[69]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[70]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[71]  Marcelo A. Montemurro,et al.  Spike-Phase Coding Boosts and Stabilizes Information Carried by Spatial and Temporal Spike Patterns , 2009, Neuron.

[72]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[73]  Edmund T Rolls,et al.  Functional neuroimaging of umami taste: what makes umami pleasant? , 2009, The American journal of clinical nutrition.

[74]  Alessandro Treves,et al.  Dissociating episodic from semantic access mode by mutual information measures: Evidence from aging and Alzheimer’s disease , 2006, Journal of Physiology-Paris.

[75]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[76]  Arnaud Delorme,et al.  Face identification using one spike per neuron: resistance to image degradations , 2001, Neural Networks.

[77]  Luiz Pessoa,et al.  Quantitative prediction of perceptual decisions during near-threshold fear detection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  E. Rolls,et al.  Information in the first spike, the order of spikes, and the number of spikes provided by neurons in the inferior temporal visual cortex , 2006, Vision Research.

[79]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[80]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[81]  Nicolas Brunel,et al.  Encoding of Naturalistic Stimuli by Local Field Potential Spectra in Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[82]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[83]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[84]  J. Csicsvari,et al.  Theta phase–specific codes for two-dimensional position, trajectory and heading in the hippocampus , 2008, Nature Neuroscience.

[85]  G. V. Simpson,et al.  Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex , 2003, Neuron.

[86]  G. DeAngelis,et al.  Does Neuronal Synchrony Underlie Visual Feature Grouping? , 2005, Neuron.

[87]  Gustavo Deco,et al.  A Dynamical Systems Hypothesis of Schizophrenia , 2007, PLoS Comput. Biol..

[88]  Steven Reece,et al.  An information theoretic approach to the contributions of the firing rates and the correlations between the firing of neurons. , 2003, Journal of neurophysiology.

[89]  E. Rolls Functions of neuronal networks in the hippocampus and neocortex in memory , 1989 .

[90]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[91]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[93]  E. Rolls,et al.  Decision-making, errors, and confidence in the brain. , 2010, Journal of neurophysiology.

[94]  Marian Stamp Dawkins,et al.  The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. By Edmund T. Rolls & Gustavo Deco. Oxford: Oxford University Press (2010). Pp. 310. Price £37.95 hardback. , 2010, Animal Behaviour.

[95]  W E Skaggs,et al.  Speed, noise, information and the graded nature of neuronal responses. , 1996, Network.

[96]  E. Rolls,et al.  Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. , 2005, Journal of neurophysiology.

[97]  E. Rolls,et al.  Reward-Spatial View Representations and Learning in the Primate Hippocampus , 2005, The Journal of Neuroscience.

[98]  Leonardo Franco,et al.  The use of decoding to analyze the contribution to the information of the correlations between the firing of simultaneously recorded neurons , 2004, Experimental Brain Research.

[99]  Edmund T. Rolls,et al.  Information encoding in the inferior temporal visual cortex: contributions of the firing rates and the correlations between the firing of neurons , 2010, Biological Cybernetics.

[100]  M. Tovée,et al.  Information encoding and the responses of single neurons in the primate temporal visual cortex. , 1993, Journal of neurophysiology.

[101]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[102]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[103]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[104]  Stefano Panzeri,et al.  How Well Can We Estimate the Information Carried in Neuronal Responses from Limited Samples? , 1997, Neural Computation.

[105]  S. Thorpe,et al.  The time course of visual processing: Backward masking and natural scene categorisation , 2005, Vision Research.

[106]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[107]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[108]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[109]  Edmund T. Rolls,et al.  Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex , 2007, Biological Cybernetics.

[110]  Gustavo Deco,et al.  An attractor hypothesis of obsessive–compulsive disorder , 2008, The European journal of neuroscience.

[111]  D. Perrett,et al.  The `Ideal Homunculus': decoding neural population signals , 1998, Trends in Neurosciences.

[112]  A. Treves,et al.  Differential impact of brain damage on the access mode to memory representations: an information theoretic approach , 2007, The European journal of neuroscience.

[113]  Mark H. Johnson,et al.  Oxford Handbook of Face Perception , 2011 .

[114]  E. Rolls,et al.  RBITOFRONTAL CORTEX: NEURONAL REPRESENTATION OF ORAL EMPERATURE AND CAPSAICIN IN ADDITION TO TASTE AND EXTURE , 2004 .

[115]  Jianfeng Feng,et al.  Noise in Attractor Networks in the Brain Produced by Graded Firing Rate Representations , 2011, PloS one.

[116]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[117]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[118]  Peter Földiák,et al.  SPARSE CODING IN THE PRIMATE CORTEX , 2002 .

[119]  Jianfeng Feng,et al.  Decision Time, Slow Inhibition, and Theta Rhythm , 2010, The Journal of Neuroscience.

[120]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[121]  Howard Eichenbaum,et al.  Remembering: Functional Organization of the Declarative Memory System , 2006, Current Biology.

[122]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[123]  Stefano Panzeri,et al.  Open Source Tools for the Information Theoretic Analysis of Neural Data , 2009, Frontiers in neuroscience.

[124]  Edmund T Rolls,et al.  The Receptive Fields of Inferior Temporal Cortex Neurons in Natural Scenes , 2003, The Journal of Neuroscience.

[125]  Stefano Panzeri,et al.  Analytical estimates of limited sampling biases in different information measures. , 1996, Network.

[126]  E. Rolls,et al.  Spatial View Cells in the Primate Hippocampus , 1997, The European journal of neuroscience.

[127]  Gustavo Deco,et al.  Neuroscience and Biobehavioral Reviews a Computational Neuroscience Approach to Schizophrenia and Its Onset , 2022 .

[128]  R. Desimone,et al.  Selectivity and sparseness in the responses of striate complex cells , 2005, Vision Research.

[129]  A Treves,et al.  On the perceptual structure of face space. , 1997, Bio Systems.

[130]  Dimitri M. Kullmann,et al.  Oscillations and Filtering Networks Support Flexible Routing of Information , 2010, Neuron.

[131]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[132]  E. Rolls,et al.  Representation of olfactory information in the primate orbitofrontal cortex. , 1996, Journal of neurophysiology.

[134]  E. Rolls,et al.  Decision‐making and Weber's law: a neurophysiological model , 2006, The European journal of neuroscience.

[135]  Stefano Panzeri,et al.  Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands , 2010, Journal of Computational Neuroscience.

[136]  Barry J. Richmond,et al.  Decoding cortical neuronal signals: Network models, information estimation and spatial tuning , 1994, Journal of Computational Neuroscience.

[137]  Gustavo Deco,et al.  The Neuronal Basis of Attention: Rate versus Synchronization Modulation , 2008, The Journal of Neuroscience.

[138]  E. Rolls,et al.  Scene perception: inferior temporal cortex neurons encode the positions of different objects in the scene , 2005, The European journal of neuroscience.

[139]  Gustavo Deco,et al.  Choice, difficulty, and confidence in the brain , 2010, NeuroImage.

[140]  C. Gross,et al.  Neural ensemble coding in inferior temporal cortex. , 1994, Journal of neurophysiology.

[141]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[142]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[143]  E T Rolls,et al.  Information about spatial view in an ensemble of primate hippocampal cells. , 1998, Journal of neurophysiology.

[144]  A. Treves,et al.  The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex , 1997, Experimental Brain Research.

[145]  Ga Miller,et al.  Note on the bias of information estimates , 1955 .

[146]  E. Rolls,et al.  Object, space, and object-space representations in the primate hippocampus. , 2005, Journal of neurophysiology.

[147]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[148]  E. Rolls,et al.  Head direction cells in the primate pre‐subiculum , 1999, Hippocampus.

[149]  E T Rolls,et al.  Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. , 1995, Journal of neurophysiology.

[150]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[151]  M. Young,et al.  Correlations, feature‐binding and population coding in primary visual cortex , 2003, Neuroreport.

[152]  Barry J. Richmond,et al.  Unbiased measures of transmitted information and channel capacity from multivariate neuronal data , 1991, Biological Cybernetics.

[153]  D. Kleinfeld,et al.  On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus. , 1994, Journal of neurophysiology.

[154]  Edmund T Rolls,et al.  Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods. , 2004, Journal of neurophysiology.

[155]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[156]  E. Rolls A computational theory of episodic memory formation in the hippocampus , 2010, Behavioural Brain Research.

[157]  Michele Bezzi,et al.  Redundancy and Synergy Arising from Pairwise Correlations in Neuronal Ensembles , 2002, Journal of Computational Neuroscience.

[158]  M. Tovée,et al.  The responses of neurons in the temporal cortex of primates, and face identification and detection , 1994, Experimental Brain Research.

[159]  Stefano Panzeri,et al.  Information-theoretic methods for studying population codes , 2010, Neural Networks.

[160]  P König,et al.  Formation of cortical cell assemblies. , 1990, Cold Spring Harbor symposia on quantitative biology.

[161]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[162]  Leila Reddy,et al.  Local Field Potentials and Spikes in the Human Medial Temporal Lobe are Selective to Image Category , 2007, Journal of Cognitive Neuroscience.

[163]  Hugo D. Critchley,et al.  The Representation of Information About Taste and Odor in the Orbitofrontal Cortex , 2010 .

[164]  Edmund T Rolls,et al.  Spatial scene representations formed by self‐organizing learning in a hippocampal extension of the ventral visual system , 2008, The European journal of neuroscience.

[165]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[166]  Edmund T Rolls,et al.  Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. , 2003, Journal of neurophysiology.

[167]  E. Rolls,et al.  Spatial view cells in the primate hippocampus and memory recall. , 2008, Reviews in the neurosciences.

[168]  E. Rolls Memory, Attention, and Decision-Making: A unifying computational neuroscience approach , 2007 .

[169]  M. Freedman,et al.  Different Patterns of Autobiographical Memory Loss in Semantic Dementia and Medial Temporal Lobe Amnesia: a Challenge to Consolidation Theory. , 2001, Neurocase.

[170]  Richard W. Hamming,et al.  Coding and Information Theory , 2018, Feynman Lectures on Computation.

[171]  Robert D. Rogers,et al.  On Measuring the Perceived Onsets of Spontaneous Actions , 2006, The Journal of Neuroscience.

[172]  Richard Wesley Hamming,et al.  Coding and information theory (2. ed.) , 1986 .

[173]  M. Tovée,et al.  Processing speed in the cerebral cortex and the neurophysiology of visual masking , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[174]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[175]  Edmund T. Rolls,et al.  Invariant visual object recognition: A model, with lighting invariance , 2006, Journal of Physiology-Paris.

[176]  I. Nelken,et al.  Population responses to multifrequency sounds in the cat auditory cortex: One- and two-parameter families of sounds , 1994, Hearing Research.

[177]  Edmund T. Rolls,et al.  Invariant recognition of feature combinations in the visual system , 2002, Biological Cybernetics.

[178]  John H. Byrne,et al.  Neural Models of Plasticity: Experimental and Theoretical Approaches , 1989 .

[179]  Edmund T Rolls,et al.  Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. , 2003, Journal of neurophysiology.

[180]  E. T. Rolls,et al.  The primate amygdala: Neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods , 2005, Neuroscience.

[181]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[182]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[183]  Stefano Panzeri,et al.  Firing Rate Distributions and Efficiency of Information Transmission of Inferior Temporal Cortex Neurons to Natural Visual Stimuli , 1999, Neural Computation.

[184]  H. Barlow The neuron doctrine in perception. , 1995 .

[185]  James L. McGaugh,et al.  Brain Organization and Memory: Cells, Systems, and Circuits , 1992 .

[186]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[187]  E. Rolls,et al.  Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey , 1985, Brain Research.

[188]  J. Hodges,et al.  Differentiating the roles of the hippocampal complex and the neocortex in long-term memory storage: evidence from the study of semantic dementia and Alzheimer's disease. , 1997, Neuropsychology.

[189]  Edmund T. Rolls,et al.  Consciousness, Decision-Making and Neural Computation , 2011 .

[190]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[191]  Nikos K Logothetis,et al.  A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings , 2009, BMC Neuroscience.

[192]  M. Tovée,et al.  Representational capacity of face coding in monkeys. , 1996, Cerebral cortex.

[193]  E. Rolls,et al.  Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. , 1990, Journal of neurophysiology.

[194]  E. Balint Memory and consciousness. , 1987, The International journal of psycho-analysis.

[195]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[196]  Jonathan D. Victor,et al.  How the brain uses time to represent and process visual information 1 1 Published on the World Wide Web on 16 August 2000. , 2000, Brain Research.

[197]  A. Thiele,et al.  Neuronal synchrony does not correlate with motion coherence in cortical area MT , 2003, Nature.

[198]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[199]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[200]  Edmund T. Rolls,et al.  What determines the capacity of autoassociative memories in the brain? Network , 1991 .