A Resource Allocation Framework for Experiment-Based Validation of Numerical Models

In experiment-based validation, uncertainties and systematic biases in model predictions are reduced by either increasing the amount of experimental evidence available for model calibration—thereby mitigating prediction uncertainty—or increasing the rigor in the definition of physics and/or engineering principles—thereby mitigating prediction bias. Hence, decision makers must regularly choose between either allocating resources for experimentation or further code development. The authors propose a decision-making framework to assist in resource allocation strictly from the perspective of predictive maturity and demonstrate the application of this framework on a nontrivial problem of predicting the plastic deformation of polycrystals.

[1]  Ismail Farajpour,et al.  Error and Uncertainty Analysis of Inexact and Imprecise Computer Models , 2013, J. Comput. Civ. Eng..

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[4]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[5]  Ajit K. Roy,et al.  Micromechanical Modeling of Viscoelastic Properties of Carbon Nanotube-Reinforced Polymer Composites , 2006 .

[6]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[7]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[8]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[9]  U. F. Kocks,et al.  Mechanisms responsible for texture development in a 5182 aluminum alloy deformed at elevated temperature , 1998 .

[10]  Sez Atamturktur,et al.  A Comparative Study: Predictive Modeling of Wind Turbine Blades , 2012 .

[11]  Laura Painton Swiler,et al.  Calibration, validation, and sensitivity analysis: What's what , 2006, Reliab. Eng. Syst. Saf..

[12]  Michael Andrew Christie,et al.  Error analysis and simulations of complex phenomena , 2005 .

[13]  U. F. Kocks,et al.  Constitutive modeling of a 5182 aluminum as a function of strain rate and temperature , 1998 .

[14]  Ben H. Thacker,et al.  Concepts of Model Verification and Validation , 2004 .

[15]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[16]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[17]  Alankar Alankar,et al.  Improved constitutive description of single crystal viscoplastic deformation by dislocation climb , 2012 .

[18]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[19]  J. R. Kamm,et al.  A Brief Overview of the State-of-the-Practice and Current Challenges of Solution Verification , 2008 .

[20]  C. S. Hartley,et al.  Modeling the mechanical response of polycrystals deforming by climb and glide , 2010 .

[21]  Brian Williams,et al.  A Bayesian calibration approach to the thermal problem , 2008 .

[22]  T. Trucano,et al.  Verification, Validation, and Predictive Capability in Computational Engineering and Physics , 2004 .

[23]  François M. Hemez,et al.  Defining predictive maturity for validated numerical simulations , 2010 .

[24]  Moshe Y. Vardi,et al.  Verification , 1917, Handbook of Automata Theory.

[25]  François M. Hemez,et al.  Defining coverage of an operational domain using a modified nearest-neighbor metric , 2015 .

[26]  Kendra L. Van Buren,et al.  Simulating the Dynamics of Wind Turbine Blades: Part II, Model Validation and Uncertainty Quantification , 2011 .

[27]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[28]  François M. Hemez,et al.  A forecasting metric for predictive modeling , 2011 .

[29]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[30]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[31]  Frank Graziani Computational methods in transport : verification and validation , 2008 .

[32]  P. James McLellan,et al.  Design of Optimal Sequential Experiments to Improve Model Predictions from a Polyethylene Molecular Weight Distribution Model , 2010 .

[33]  Amr M. Baz,et al.  A Coupled Nonlinear Model for Axisymmetric Acoustic Resonators Driven by Piezoelectric Bimorphs , 2006 .

[34]  Yi Liu,et al.  On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations , 2004 .