Separability criteria and bounds for entanglement measures

Employing a recently proposed separability criterion we develop analytical lower bounds for the concurrence and for the entanglement of formation of bipartite quantum systems. The separability criterion is based on a nondecomposable positive map which operates on state spaces with even dimension, N ≥ 4, and leads to a class of nondecomposable optimal entanglement witnesses. It is shown that the bounds derived here complement and improve the existing bounds obtained from the criterion of positive partial transposition and from the realignment criterion.

[1]  J. Schliemann Entanglement in SU(2)-invariant quantum systems: The positive partial transpose criterion and others , 2005, quant-ph/0503123.

[2]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[3]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[4]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[5]  Heinz-Peter Breuer Entanglement in SO(3)-invariant bipartite quantum systems , 2005 .

[6]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[7]  State space structure and entanglement of rotationally invariant spin systems , 2005, quant-ph/0506224.

[8]  Oliver Rudolph Some properties of the computable cross-norm criterion for separability , 2002, quant-ph/0212047.

[9]  Terhal,et al.  Entanglement of formation for isotropic states , 2000, Physical review letters.

[10]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[11]  C. Caves,et al.  Concurrence-based entanglement measures for isotropic states , 2003 .

[12]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[13]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[14]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[15]  S. Fei,et al.  Entanglement of formation of bipartite quantum states. , 2005, Physical review letters.

[16]  G. Vidal On the characterization of entanglement , 1998 .

[17]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[18]  A. Galindo,et al.  Quantum Mechanics I , 1990 .

[19]  D A Lidar,et al.  Quantum phase transitions and bipartite entanglement. , 2004, Physical review letters.

[20]  J. Cirac,et al.  Characterization of separable states and entanglement witnesses , 2000, quant-ph/0005112.

[21]  N. Rowley,et al.  Cranked-shell-model calculations in a truncated space , 1989 .

[22]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[23]  H. Breuer Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.

[24]  M Roncaglia,et al.  Long-distance entanglement in spin systems. , 2006, Physical review letters.

[25]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[26]  S. Fei,et al.  Concurrence of arbitrary dimensional bipartite quantum states. , 2005, Physical review letters.

[27]  S. Fei,et al.  R function related to entanglement of formation , 2006, quant-ph/0602137.

[28]  Ryszard Horodecki,et al.  Quantum Information , 2001, Acta Physica Polonica A.

[29]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.