Solving Multi-linear Systems with $$\mathcal {M}$$M-Tensors

This paper is concerned with solving some structured multi-linear systems, especially focusing on the equations whose coefficient tensors are $$\mathcal {M}$$M-tensors, or called $$\mathcal {M}$$M-equations for short. We prove that a nonsingular $$\mathcal {M}$$M-equation with a positive right-hand side always has a unique positive solution. Several iterative algorithms are proposed for solving multi-linear nonsingular $$\mathcal {M}$$M-equations, generalizing the classical iterative methods and the Newton method for linear systems. Furthermore, we apply the $$\mathcal {M}$$M-equations to some nonlinear differential equations and the inverse iteration for spectral radii of nonnegative tensors.

[1]  Naihua Xiu,et al.  The sparsest solutions to Z-tensor complementarity problems , 2015, Optim. Lett..

[2]  Yi-min Wei,et al.  ℋ-tensors and nonsingular ℋ-tensors , 2016 .

[3]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[4]  Tan Zhang,et al.  A survey on the spectral theory of nonnegative tensors , 2013, Numer. Linear Algebra Appl..

[5]  Liqun Qi,et al.  Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor , 2012, Numer. Linear Algebra Appl..

[6]  Yi,et al.  LINEAR CONVERGENCE OF THE LZI ALGORITHM FOR WEAKLY POSITIVE TENSORS , 2012 .

[7]  Changjiang Bu,et al.  The inverse, rank and product of tensors , 2014 .

[8]  Tan Zhang,et al.  Primitivity, the Convergence of the NQZ Method, and the Largest Eigenvalue for Nonnegative Tensors , 2011, SIAM Journal on Matrix Analysis and Applications.

[9]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[10]  Takashi Noda,et al.  Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix , 1971 .

[11]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[12]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[13]  Liqun Qi,et al.  A Necessary and Sufficient Condition for Existence of a Positive Perron Vector , 2015, SIAM J. Matrix Anal. Appl..

[14]  Yan Zhu,et al.  Criterions for the positive definiteness of real supersymmetric tensors , 2014, J. Comput. Appl. Math..

[15]  Werner C. Rheinboldt,et al.  Methods for solving systems of nonlinear equations , 1987 .

[16]  Liqun Qi,et al.  M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..

[17]  Wen-Wei Lin,et al.  A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible $$M$$M-matrix , 2013, Numerische Mathematik.

[18]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[19]  C. Canuto,et al.  On the decay of the inverse of matrices that are sum of Kronecker products , 2013, 1312.6631.

[20]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[21]  L. Qi,et al.  Efficient algorithms for computing the largest eigenvalue of a nonnegative tensor , 2013, Frontiers of Mathematics in China.

[22]  Chen Ling,et al.  On determinants and eigenvalue theory of tensors , 2013, J. Symb. Comput..

[23]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[24]  Yoshimasa Matsuno,et al.  Exact solutions for the nonlinear Klein–Gordon and Liouville equations in four‐dimensional Euclidean space , 1987 .

[25]  A. Berman CHAPTER 2 – NONNEGATIVE MATRICES , 1979 .

[26]  D. Zwillinger Handbook of differential equations , 1990 .

[27]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[28]  Ludwig Elsner,et al.  Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix , 1976 .

[29]  Marc Moreno Triangular Sets for Solving Polynomial Systems: a Comparative Implementation of Four Methods , 1999 .

[30]  M. Ng,et al.  Solving sparse non-negative tensor equations: algorithms and applications , 2015 .

[31]  L. Qi,et al.  M-tensors and nonsingular M-tensors , 2013, 1307.7333.

[32]  Wei,et al.  H-tensors and nonsingular H-tensors , 2016 .

[33]  H. Amann Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces , 1976 .

[34]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors II , 2011, SIAM J. Matrix Anal. Appl..

[35]  Werner C. Rheinboldt,et al.  Methods for Solving Systems of Nonlinear Equations: Second Edition , 1998 .

[36]  Changbo Chen,et al.  Algorithms for computing triangular decomposition of polynomial systems , 2012, J. Symb. Comput..

[37]  G. Golub,et al.  Bounds for the Entries of Matrix Functions with Applications to Preconditioning , 1999 .

[38]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[39]  L. Qi Symmetric nonnegative tensors and copositive tensors , 2012, 1211.5642.

[40]  Yiju Wang,et al.  Nonsingular $H$-tensor and its criteria , 2016 .