Efficient universal quantum channel simulation in IBM’s cloud quantum computer

The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of “quasi-extreme” channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

[1]  Xinhua Peng,et al.  Experimental simulation of the Unruh effect on an NMR quantum simulator , 2016 .

[2]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[3]  Shi-Jie Wei,et al.  Duality quantum computer and the efficient quantum simulations , 2015, Quantum Information Processing.

[4]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[5]  Gui-Lu Long Mathematical Theory of the Duality Computer in the Density Matrix Formalism , 2007, Quantum Inf. Process..

[6]  D. Poulin,et al.  Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.

[7]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[8]  J. Cirac,et al.  Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.

[9]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[10]  Long Gui-lu,et al.  General Quantum Interference Principle and Duality Computer , 2006 .

[11]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[12]  V. Giovannetti,et al.  Quantum channels and memory effects , 2012, 1207.5435.

[13]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[14]  William J. Munro,et al.  Using Quantum Computers for Quantum Simulation , 2010, Entropy.

[15]  M. Lewenstein,et al.  Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.

[16]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[17]  Simon J. Devitt,et al.  Performing Quantum Computing Experiments in the Cloud , 2016, 1605.05709.

[18]  Bei Zeng,et al.  Quantum state and process tomography via adaptive measurements , 2016, 1604.06277.

[19]  S. Sachdev Quantum Phase Transitions , 1999 .

[20]  Guanru Feng,et al.  Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system , 2016 .

[21]  Stan Gudder,et al.  Mathematical Theory of Duality Quantum Computers , 2007, Quantum Inf. Process..

[22]  R. Feynman Simulating physics with computers , 1999 .

[23]  Martin Kliesch,et al.  Quasilocality and efficient simulation of markovian quantum dynamics. , 2011, Physical review letters.

[24]  Yang Liu,et al.  ANALYTIC ONE-BIT AND CNOT GATE CONSTRUCTIONS OF GENERAL n-QUBIT CONTROLLED GATES , 2008 .

[25]  Rainer Kaltenbaek,et al.  Linear-Optics Realization of Channels for Single-Photon Multimode Qudits , 2010, 1012.3474.

[26]  Yan-Ni Dou,et al.  Note on Generalized Quantum Gates and Quantum Operations , 2008 .

[27]  Christopher King,et al.  Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.

[28]  J Eisert,et al.  Dissipative quantum Church-Turing theorem. , 2011, Physical review letters.

[29]  Susan Shannon,et al.  Trends in Quantum Computing Research , 2006 .

[30]  Yue-Qing Wang,et al.  Applications of the generalized Lüders theorem , 2008 .

[31]  Matthias Christandl,et al.  Quantum circuits for quantum channels , 2016, 1609.08103.

[32]  F. Nori,et al.  Quantum algorithm for simulating the dynamics of an open quantum system , 2011, 1103.3377.

[33]  Shao-Ming Fei Adaptive-measurement based quantum tomography , 2016 .

[34]  Tao Xin,et al.  Experimental demonstration of concatenated composite pulses robustness to non-static errors , 2016 .

[35]  Robert Prevedel,et al.  Optimal linear optical implementation of a single-qubit damping channel , 2011, 1109.2070.

[36]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[37]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[38]  Li Jian,et al.  Linear Optical Realization of Qubit Purification with Quantum Amplitude Damping Channel , 2007 .

[39]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[40]  Debbie W. Leung,et al.  Universal simulation of Markovian quantum dynamics , 2001 .

[41]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[42]  Tomaž Prosen,et al.  Nonequilibrium phase transition in a periodically driven XY spin chain. , 2011, Physical review letters.

[43]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[44]  M. P. Almeida,et al.  Environment-Induced Sudden Death of Entanglement , 2007, Science.

[45]  Shi-Jie Wei,et al.  Duality quantum algorithm efficiently simulates open quantum systems , 2016, Scientific Reports.

[46]  Shilin Huang,et al.  NMRCloudQ: a quantum cloud experience on a nuclear magnetic resonance quantum computer. , 2017, Science bulletin.

[47]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[48]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[49]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[50]  R. Blatt,et al.  Quantum simulation of the Dirac equation , 2009, Nature.

[51]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[52]  Wang Chuan,et al.  Allowable Generalized Quantum Gates , 2009 .

[53]  S. Gudder Duality Quantum Computers and Quantum Operations , 2008 .

[54]  Gui Lu Long Duality Quantum Computing and Duality Quantum Information Processing , 2011 .

[55]  Yong-Su Kim,et al.  Experimental demonstration of decoherence suppression by quantum measurement reversal , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[56]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[57]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[58]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[59]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[60]  D. M. Tong,et al.  Effects of noisy quantum channels on one-qubit rotation gate , 2012 .

[61]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[62]  Mikko Möttönen,et al.  Quantum circuits for general multiqubit gates. , 2004, Physical review letters.

[63]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[64]  Barry C Sanders,et al.  Solovay-Kitaev decomposition strategy for single-qubit channels. , 2013, Physical review letters.

[65]  Gui-Lu Long,et al.  Experimental quantum Hamiltonian identification from measurement time traces. , 2014, Science bulletin.

[66]  G. Long The General Quantum Interference Principle and the Duality Computer , 2005, quant-ph/0512120.

[67]  D. DiVincenzo,et al.  Problem of equilibration and the computation of correlation functions on a quantum computer , 1998, quant-ph/9810063.