Numerical Solution of Polymer Self-Consistent Field Theory

We propose efficient pseudospectral numerical schemes for solving the self-consistent, mean-field equations for inhomogeneous polymers. In particular, we introduce a robust class of semi-implicit methods that employ asymptotic small scale information about the nonlocal density operators. The relaxation schemes are further embedded in a multilevel strategy resulting in a method that can cut down the computational cost by an order of magnitude. Three illustrative problems are used to test the numerical methods: (i) the problem of finding the mean chemical potential field for a prescribed inhomogeneous density of homopolymers; (ii) an incompressible melt blend of two chemically distinct homopolymers; and (iii) an incompressible melt of AB diblock copolymers.

[1]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[2]  E. Helfand Theory of inhomogeneous polymers: Fundamentals of the Gaussian random‐walk model , 1975 .

[3]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[4]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[5]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[6]  G. J. Fleer,et al.  Statistical Theory of the Adsorption of Interacting Chain Molecules. 1. Partition Function, Segment Density Distribution, and Adsorption Isotherms , 1979 .

[7]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[8]  G. J. Fleer,et al.  Statistical theory of the adsorption of interacting chain molecules. II. Train, loop, and tail size distribution , 1980 .

[9]  L. Leibler Theory of Microphase Separation in Block Copolymers , 1980 .

[10]  J. Noolandi,et al.  Theory of inhomogeneous multicomponent polymer systems , 1981 .

[11]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[12]  J. Vavasour,et al.  Self-consistent mean field theory of the microphase diagram of block copolymer/neutral solvent blends , 1992 .

[13]  J. Fraaije,et al.  Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .

[14]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[15]  Schick,et al.  Stable and unstable phases of a diblock copolymer melt. , 1994, Physical review letters.

[16]  M. Schick,et al.  Self-assembly of block copolymers , 1996 .

[17]  J. Noolandi,et al.  Theory of Anisotropic Fluctuations in Ordered Block Copolymer Phases , 1996 .

[18]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[19]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[20]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[21]  G. Fredrickson,et al.  COMBINATORIAL SCREENING OF COMPLEX BLOCK COPOLYMER ASSEMBLY WITH SELF-CONSISTENT FIELD THEORY , 1999 .

[22]  G. Fredrickson,et al.  Optimizing chain bridging in complex block copolymers , 2001 .

[23]  G. Fredrickson,et al.  Field-theoretic polymer simulations , 2001 .

[24]  M. Matsen The standard Gaussian model for block copolymer melts , 2002 .

[25]  G. Kalosakas,et al.  Improved numerical algorithm for exploring block copolymer mesophases , 2002 .

[26]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[27]  G. Fredrickson Dynamics and rheology of inhomogeneous polymeric fluids: A complex Langevin approach , 2002 .

[28]  G. Fredrickson,et al.  Field-Theoretic Computer Simulation Methods for Polymers and Complex Fluids , 2002 .

[29]  Fluctuation Effects in Ternary AB + A + B Polymeric Emulsions , 2003, cond-mat/0303654.

[30]  Glenn H. Fredrickson,et al.  Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure , 2003 .

[31]  T. Lookman,et al.  Improved convergence in block copolymer self-consistent field theory by Anderson mixing. , 2004, The Journal of chemical physics.