mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants

[1]  M. Beltramello,et al.  Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity , 2021, Cell.

[2]  A. Sigal,et al.  Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma , 2021, medRxiv.

[3]  B. Graham,et al.  mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants , 2021, bioRxiv.

[4]  L. Morris,et al.  SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma , 2021, bioRxiv.

[5]  M. Nussenzweig,et al.  Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice , 2021, Science.

[6]  Vineet D. Menachery,et al.  Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera , 2021, bioRxiv.

[7]  E. Hodcroft,et al.  Genetic Variants of SARS-CoV-2-What Do They Mean? , 2021, JAMA.

[8]  J. Bloom,et al.  Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies , 2021, bioRxiv.

[9]  Ping Li,et al.  Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine , 2020 .

[10]  Rommie E. Amaro,et al.  SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma , 2020, bioRxiv.

[11]  A. Tanuri,et al.  Genomic Characterization of a Novel SARS-CoV-2 Lineage from Rio de Janeiro, Brazil , 2020, Journal of Virology.

[12]  Carl A. B. Pearson,et al.  Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England , 2020, medRxiv.

[13]  Sergei L. Kosakovsky Pond,et al.  Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa , 2020, medRxiv.

[14]  J. Bloom,et al.  A human coronavirus evolves antigenically to escape antibody immunity , 2020, bioRxiv.

[15]  John D. Davis,et al.  REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 , 2020, The New England journal of medicine.

[16]  J. Mascola,et al.  Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination , 2020, The New England journal of medicine.

[17]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2020, bioRxiv.

[18]  M. Nussenzweig,et al.  Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo , 2020, The Journal of experimental medicine.

[19]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, Cell Host & Microbe.

[20]  Lisa E. Gralinski,et al.  An Engineered Antibody with Broad Protective Efficacy in Murine Models of SARS and COVID-19 , 2020, bioRxiv.

[21]  M. Nussenzweig,et al.  Evolution of Antibody Immunity to SARS-CoV-2 , 2020, bioRxiv.

[22]  E. Walsh,et al.  Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates , 2020, The New England journal of medicine.

[23]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[24]  G. Atwal,et al.  REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters , 2020, Science.

[25]  M. Nussenzweig,et al.  All eyes on a hurdle race for a SARS-CoV-2 vaccine , 2020, Nature.

[26]  P. Dormitzer,et al.  COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses , 2020, Nature.

[27]  M. Beltramello,et al.  Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms , 2020, Science.

[28]  F. Krammer SARS-CoV-2 vaccines in development , 2020, Nature.

[29]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[30]  Sarah K. Hilton,et al.  Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition , 2020, bioRxiv.

[31]  Ralf Bartenschlager,et al.  Structures and distributions of SARS-CoV-2 spike proteins on intact virions , 2020, Nature.

[32]  Rebecca J. Loomis,et al.  Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates , 2020, The New England journal of medicine.

[33]  G. Ippolito,et al.  Structure-based design of prefusion-stabilized SARS-CoV-2 spikes , 2020, Science.

[34]  C. Rice,et al.  Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants , 2020, bioRxiv.

[35]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[36]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[37]  C. Rice,et al.  Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses , 2020, The Journal of experimental medicine.

[38]  Xuguang Li,et al.  The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity , 2020, Cell.

[39]  Lisa E. Gralinski,et al.  Potently neutralizing and protective human antibodies against SARS-CoV-2 , 2020, Nature.

[40]  J. Mascola,et al.  An mRNA Vaccine against SARS-CoV-2 — Preliminary Report , 2020, The New England journal of medicine.

[41]  M. Nussenzweig,et al.  Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies , 2020, Cell.

[42]  David Robertson,et al.  CoV-GLUE: A Web Application for Tracking SARS-CoV-2 Genomic Variation , 2020 .

[43]  C. Rice,et al.  Convergent antibody responses to SARS-CoV-2 in convalescent individuals , 2020, Nature.

[44]  G. Atwal,et al.  Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies , 2020, Science.

[45]  D. Burton,et al.  Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model , 2020, Science.

[46]  C. Rice,et al.  Convergent Antibody Responses to SARS-CoV-2 in Convalescent Individuals , 2020, Nature.

[47]  C. Rice,et al.  Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses , 2020, bioRxiv.

[48]  Ilya J. Finkelstein,et al.  Structure-based Design of Prefusion-stabilized SARS-CoV-2 Spikes , 2020, bioRxiv.

[49]  M. Nussenzweig,et al.  Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies , 2020, bioRxiv.

[50]  Linqi Zhang,et al.  Human neutralizing antibodies elicited by SARS-CoV-2 infection , 2020, Nature.

[51]  J. Greenbaum,et al.  Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals , 2020, Cell.

[52]  Amalio Telenti,et al.  Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody , 2020, Nature.

[53]  X. Xie,et al.  Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells , 2020, Cell.

[54]  M. V. van Breemen,et al.  Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability , 2020, Science.

[55]  Rozhgar A. Khailany,et al.  Genomic characterization of a novel SARS-CoV-2 , 2020, Gene Reports.

[56]  Philip L. Felgner,et al.  A serological assay to detect SARS-CoV-2 seroconversion in humans , 2020, medRxiv.

[57]  Peter D. Kwong,et al.  cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody Prevalence , 2019, bioRxiv.

[58]  James E. Crowe,et al.  High frequency of shared clonotypes in human B cell receptor repertoires , 2019, Nature.

[59]  D. Burton,et al.  Commonality despite exceptional diversity in the baseline human antibody repertoire , 2018, Nature.

[60]  P. Adams,et al.  A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps , 2018, Nature Methods.

[61]  Nico Pfeifer,et al.  Safety and anti-viral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals , 2018, Nature Medicine.

[62]  Nico Pfeifer,et al.  Combination therapy with anti-HIV-1 antibodies maintains viral suppression , 2018, Nature.

[63]  M. Nussenzweig,et al.  Safety and anti-viral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals , 2018, Nature Medicine.

[64]  M. Nussenzweig,et al.  Combination therapy with anti-HIV-1 antibodies maintains viral suppression , 2018, Nature.

[65]  Thomas C Terwilliger,et al.  A fully automatic method yielding initial models from high-resolution electron cryo-microscopy maps , 2018, Nature Methods.

[66]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[67]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[68]  Stefan Elbe,et al.  Data, disease and diplomacy: GISAID's innovative contribution to global health , 2017, Global challenges.

[69]  William S. DeWitt,et al.  A Public Database of Memory and Naive B-Cell Receptor Sequences , 2016, PloS one.

[70]  Steven H. Kleinstein,et al.  Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data , 2015, Bioinform..

[71]  H. Lehrach,et al.  Onset of Immune Senescence Defined by Unbiased Pyrosequencing of Human Immunoglobulin mRNA Repertoires , 2012, PloS one.

[72]  Nichole E Carlson,et al.  Duration of humoral immunity to common viral and vaccine antigens. , 2007, The New England journal of medicine.

[73]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[74]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[75]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[76]  H. Guy Amino acid side-chain partition energies and distribution of residues in soluble proteins. , 1985, Biophysical journal.