Determination of low latitude plasma drift speeds from FUV images

[1] Thousands of images of the nighttime equatorial airglow arcs have been obtained by the Far-Ultraviolet Imager (FUV) on-board the NASA IMAGE satellite. Imaging periods lasting several hours around the time of satellite apogee allow for the determination of the velocity of drifting plasma density depletions occurring within the airglow arcs. These velocities reflect the E × B drift of low-latitude plasma under the influence of a vertical electric field. A survey of several weeks of data produces information regarding the variation of drift speeds with solar 10.7-cm radio flux. Comparisons to previous measurements by the Jicamarca radar show that the FUV-determined plasma drift speeds are 10–35% greater, particularly before 2100 local time. This difference is attributed mainly to the different magnetic latitudes of the observations.

[1]  Oswald H. W. Siegmund,et al.  Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-α and OI 135.6 nm , 2000 .

[2]  Harald U. Frey,et al.  Summary of quantitative interpretation of IMAGE far ultraviolet auroral data , 2003 .

[3]  T. Maruyama,et al.  Global view of the nighttime low‐latitude ionosphere by the IMAGE/FUV 135.6 nm observations , 2003 .

[4]  Michael C. Kelley,et al.  The Earth's Ionosphere : Plasma Physics and Electrodynamics , 1989 .

[5]  T. Moore,et al.  The Earth's Ionosphere. Plasma Physics and Electrodynamics. Michael C. Kelley, with contributions from Rodney A. Heelis. Academic Press, San Diego, CA, 1989. xii, 487 pp., illus. $89.95. International Geophysics Series, vol. 43. , 1990, Science.

[6]  Harald U. Frey,et al.  Far Ultraviolet Imaging from the Image Spacecraft , 2000 .

[7]  L. H. Brace,et al.  Geomagnetic equatorial anomaly in zonal plasma flow , 1987 .

[8]  Ronald F. Woodman,et al.  Average vertical and zonal F region plasma drifts over Jicamarca , 1991 .

[9]  S. Mende,et al.  North‐south aligned equatorial airglow depletions , 1978 .

[10]  A. Richmond Ionospheric Electrodynamics Using Magnetic Apex Coordinates. , 1995 .

[11]  R. J. Moffett,et al.  lonization transport effects in the equatorial F region , 1966 .

[12]  J. Eccles,et al.  Latitude dependence of zonal plasma drifts obtained from dual‐site airglow observations , 2003 .

[13]  Etienne Renotte,et al.  Far ultraviolet imaging from the IMAGE spacecraft. 1. System design , 2000 .

[14]  George R. Carruthers,et al.  Apollo 16 far ultraviolet imagery of the polar auroras, tropical airglow belts, and general airglow , 1976 .

[15]  A. Hedin Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations , 1984 .

[16]  James L. Burch,et al.  IMAGE mission overview , 2000 .

[17]  Paul M. Kintner,et al.  Global Positioning System measurements of the ionospheric zonal apparent velocity at Cachoeira Paulista in Brazil , 2000 .

[18]  Cesar E. Valladares,et al.  Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset , 1996 .

[19]  J. Meriwether,et al.  Equatorial and low latitude thermospheric winds: Measured quiet time variations with season and solar flux from 1980 to 1990 , 1999 .

[20]  M. Mendillo,et al.  Imaging science contributions to equatorial aeronomy: Initial results from the MISETA program , 1997 .

[21]  S. Basu,et al.  The multi‐instrumented studies of equatorial thermosphere aeronomy scintillation system: Climatology of zonal drifts , 1996 .

[22]  J. Meriwether,et al.  Equatorial thermospheric wind changes during the solar cycle: Measurements at Arequipa, Peru, from 1983 to 1990 , 1991 .

[23]  P. Kintner,et al.  Ionospheric irregularity zonal velocities over Cachoeira Paulista , 2002 .