Fitting multi-planet transit models to photometric time-data series by evolution strategies

In this paper we present the application of an evolution strategy to the problem of detecting multi-planet transit events in photometric time-data series. Planetary transits occur when a planet regularly eclipses its host star, reducing stellar luminosity. The transit method is amongst the most successful detection methods for exoplanet and is presently performed by space telescope missions. The goal of the presented algorithm is to find high quality fits of multi-planet transit models to observational data, which is a challenging computational task. In particular we present a method for an effective objective function evaluation and show how the algorithm can be implemented on graphics processing units. Results on artificial test data with three artificial planets are reported.

[1]  Annie Baglin,et al.  COROT: A minisat for pionnier science, asteroseismology and planets finding , 2003 .

[2]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[3]  Rafael Mayo,et al.  Solving Dense Linear Systems on Graphics Processors , 2008, Euro-Par.

[4]  D. K. Cullers,et al.  A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis. , 1996, Icarus.

[5]  Cyril Fonlupt,et al.  Population Parallel GP on the G80 GPU , 2008, EuroGP.

[6]  R. Stellingwerf Period determination using phase dispersion minimization , 1978 .

[7]  Vinesh Rajpaul,et al.  Genetic algorithms in astronomy and astrophysics , 2012, ArXiv.

[8]  Jon M. Jenkins,et al.  Kepler: a space mission to detect earth-class exoplanets , 1998, Astronomical Telescopes and Instrumentation.

[9]  U. L. Laguna,et al.  TRUFAS, a wavelet-based algorithm for the rapid detection of planetary transits , 2007, 0705.4557.

[10]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[11]  A. Collier Cameron,et al.  A fast hybrid algorithm for exoplanetary transit searches , 2006, astro-ph/0609418.

[12]  Jack J. Lissauer,et al.  Extrasolar planets , 2002, Nature.

[13]  Günther R. Raidl,et al.  Fitting Rectangular Signals to Time Series Data by Metaheuristic Algorithms , 2009, EUROCAST.

[14]  Günther R. Raidl,et al.  Determining Orbital Elements of Extrasolar Planets by Evolution Strategies , 2007, EUROCAST.

[15]  F. Fressin,et al.  Transdet: a matched-filter based algorithm for transit detection - application to simulated COROT light curves , 2007, 0709.3727.

[16]  S. Aigrain,et al.  Practical planet prospecting , 2004 .

[17]  H. Rauer,et al.  The BAST algorithm for transit detection , 2008, 0810.4760.

[18]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[19]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[20]  B. Tingley Improvements to existing transit detection algorithms and their comparison , 2003 .

[21]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[22]  P. Sackett,et al.  A Photometric Diagnostic to Aid in the Identification of Transiting Extrasolar Planets , 2005, astro-ph/0503575.

[23]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .