Extrapolation of finite cluster and crystal‐orbital calculations on trans‐polyacetylene

Sequences of total energies of trans-polyacetylene were obtained by either finite cluster or crystal-orbital calculations. Several different extrapolation methods were employed to improve the convergence of these two sequences. The properties of the extrapolation algorithms are discussed with emphasis on efficiency and reliability for short strings of physical input data. Four decimal digits were gained by extrapolation in the case of the finite cluster energies, but, at most, 2 decimal digits in the case of the crystal-orbital energies. The extrapolation of the finite cluster energies gave results that are almost as good as the results produced by the extrapolation of the crystal-orbital energies, and that are better than the unextrapolated crystal-orbital energies.

[1]  C. Liegener Abinitio calculations of correlation effects in trans‐polyacetylene , 1988 .

[2]  F. Beleznay,et al.  Application of a modified Romberg algorithm to Hartree-Fock calculations on periodic chains , 1987 .

[3]  Y. I'haya,et al.  Ab initio crystal orbital calculations on (CH)n and (HF)n with extended basis sets , 1984 .

[4]  R. Dovesi Ab initio Hartree–Fock approach to the study of polymers: Application to polyacetylenes , 1984 .

[5]  P. Wynn,et al.  On a Procrustean technique for the numerical transformation of slowly convergent sequences and series , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  S. Suhai On the excitonic nature of the first UV absorption peak in polyene , 1986 .

[7]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[8]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[9]  J. G. Fripiat,et al.  Towards Specific AB Initio Programs for Polymer Calculations , 1984 .

[10]  David A. Smith,et al.  Numerical Comparisons of Nonlinear Convergence Accelerators , 1982 .

[11]  David Levin,et al.  Development of non-linear transformations for improving convergence of sequences , 1972 .

[12]  Claude Brezinski,et al.  Convergence acceleration methods: The past decade☆ , 1985 .

[13]  Jean-Marie André,et al.  L'Étude Théorique des Systèmes Périodiques. II. La Méthode LCAO ? SCF ? CO , 1967 .

[14]  Jean-Marie André,et al.  L'Étude Théorique des Systèmes Périodiques. II. La MéthodeLCAOSCFCO: LA MÉTHODELCAOSCFCO-II , 1967 .

[15]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[16]  P. Wynn,et al.  Sequence Transformations and their Applications. , 1982 .

[17]  C. Brezinski,et al.  Accélération de la convergence en analyse numérique , 1977 .

[18]  Ernst Joachim Weniger,et al.  Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .

[19]  H. Teramae Abinitio study on the cis–trans energetics of polyacetylene , 1986 .

[20]  F. Beleznay Estimations for asymptotic series using a modified Romberg algorithm. I. Finite-size scaling calculations , 1986 .

[21]  G. Del Re,et al.  Self-Consistent-Field Tight-Binding Treatment of Polymers. I. Infinite Three-Dimensional Case , 1967 .

[22]  H. Villar,et al.  Structure, vibrational spectra, and IR intensities of polyenes from ab initio SCF calculations , 1988 .

[23]  S. Suhai Bond alternation in infinite polyene: Peierls distortion reduced by electron correlation , 1983 .