Origin and sensitivity of the light peak in the intact cat eye

1. The light peak is a large light‐induced change in the DC potential across the eye (standing potential) that reaches its maximum in 5‐13 min in mammals. The light peak of the intact cat eye was studied in order to define its cellular origin and stimulus—response characteristics. Direct‐coupled recordings were made with a vitreal electrode and also with intraretinal and intracellular micro‐electrodes. Light peaks were generally evoked with 300 sec periods of diffuse white illumination.

[1]  Christina Enroth-Cugell,et al.  Saturation of rod pools in cat , 1976, Vision Research.

[2]  H. Kolder,et al.  Oscillations of the corneo-retinal potential in animals. , 1966, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[3]  K. Schicketanz,et al.  Das Elektro-Okulogramm der zentralen Retina , 1975 .

[4]  C. Enroth-Cugell,et al.  Absolute dark sensitivity and center size in cat retinal ganglion cells , 1978, Brain Research.

[5]  K. Brown,et al.  Effects of the rod receptor potential upon retinal extracellular potassium concentration , 1979, The Journal of general physiology.

[6]  W. H. Miller,et al.  Cone-specific c-wave in the turtle retina , 1978, Vision Research.

[7]  T. Wiesel,et al.  Analysis of the intraretinal electroretinogram in the intact cat eye , 1961, The Journal of physiology.

[8]  R. H. Steinberg,et al.  Rod‐dependent intracellular response to light recorded from the pigment epithelium of the cat retina , 1971, The Journal of physiology.

[9]  J. Hennig,et al.  Further investigations concerning the fast oscillation of the retinal potential. , 1976, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[10]  J. Kelsey,et al.  Changes produced by light in the standing potential of the human eye , 1962, The Journal of physiology.

[11]  R. Täumer,et al.  The slow oscillation of the retinal potential: a biochemical feedback stimulated by the activity of rods and cones. , 1976, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[12]  C. E. Andrews Rod and Cone Contribution to the EOG Ratio , 1978, American journal of optometry and physiological optics.

[13]  R. H. Steinberg,et al.  A new microelectrode positioner for intraretinal recording from the intact mammalian eye. , 1968, Vision research.

[14]  J. L. Brown,et al.  Dark adaptation and spectral sensitivity in the cat. , 1970, Vision research.

[15]  R. H. Steinberg The rod after-effect in S-potentials from the cat retina. , 1969, Vision research.

[16]  R. H. Steinberg Comparison of the intraretinal b-wave and d.c. component in the area centralis of cat retina. , 1969, Vision research.

[17]  H B BARLOW,et al.  Increment thresholds at low intensities considered as signal/noise discriminations , 1957, The Journal of physiology.

[18]  D. Norren,et al.  Intraretinal recordings of slow electrical responses to steady illumination in monkey: Isolation of receptor responses and the origin of the light peak , 1982, Vision Research.

[19]  Christina Enroth-Cugell,et al.  Cone signals in the cat's retina , 1977, The Journal of physiology.

[20]  N. Daw,et al.  Cat colour vision: one cone process or several? , 1969, The Journal of physiology.

[21]  D. G. Green,et al.  Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. , 1976, Journal of neurophysiology.

[22]  K. T. Brown OPTICAL STIMULATOR, MICROELECTRODE ADVANCER, AND ASSOCIATED EQUIPMENT FOR INTRARETINAL NEUROPHYSIOLOGY IN CLOSED MAMMALIAN EYES. , 1964, Journal of the Optical Society of America.

[23]  R. H. Steinberg,et al.  Origin of the light peak: in vitro study of Gekko gekko , 1982, The Journal of physiology.

[24]  J. Kelsey,et al.  Some observations on the relationship between the standing potential of the human eye and the bleaching and regeneration of visual purple , 1962, The Journal of physiology.

[25]  K. Brown,et al.  Instrumentation and technique for beveling fine micropipette electrodes , 1975, Brain Research.

[26]  P. Gouras,et al.  LIGHT-INDUCED DC RESPONSES OF MONKEY RETINA BEFORE AND AFTER CENTRAL RETINAL ARTERY INTERRUPTION. , 1965, Investigative ophthalmology.

[27]  N. Kikawada,et al.  Variations in the corneo-retinal standing potential of the vertebrate eye during light and dark adaptations. , 1968, The Japanese journal of physiology.

[28]  R. H. Steinberg,et al.  Rod and cone contributions to S-potentials from the cat retina. , 1969, Vision research.

[29]  K. Brown,et al.  New microelectrode techniques for intracellular work in small cells , 1977, Neuroscience.

[30]  R. H. Steinberg,et al.  Initial observations on the isolated retinal pigment epithelium-choroid of the cat. , 1978, Investigative ophthalmology & visual science.

[31]  R. H. Steinberg,et al.  Light-evoked changes in [K+]0 in retina of intact cat eye. , 1980, Journal of neurophysiology.

[32]  B. Oakley Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization , 1977, The Journal of general physiology.

[33]  K. Brown,et al.  The electroretinogram: its components and their origins. , 1968, UCLA forum in medical sciences.

[34]  P. Gouras,et al.  CONE ACTIVITY IN THE LIGHT-INDUCED DC RESPONSE OF MONKEY RETINA. , 1965, Investigative ophthalmology.

[35]  F. Dudek,et al.  Slow PIII component of the carp electroretinogram , 1975, The Journal of general physiology.

[36]  R. H. Steinberg,et al.  Aspects of electrolyte transport in frog pigment epithelium. , 1973, Experimental eye research.

[37]  E. Aantaa,et al.  Light-induced increase in amplitude of electro-oculogram. Evoked with blue and red lights in totally color-blind and normal humans. , 1973, Archives of ophthalmology.