The orbital–thermal evolution and global expansion of Ganymede

Article history: The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.

[1]  S. Squyres Volume changes in Ganymede and Callisto and the origin of grooved terrain , 1980 .

[2]  Kevin Zahnle,et al.  Cratering Rates in the Outer Solar System , 1999 .

[3]  Jeffrey S. Kargel,et al.  Brine volcanism and the interior structures of asteroids and icy satellites , 1991 .

[4]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[5]  D. Stevenson Anomalous Bulk Viscosity of Two-Phase Fluids and Implications for Planetary Interiors , 1983 .

[6]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[7]  Robert T. Pappalardo,et al.  Geology of Europa , 2004 .

[8]  H. Melosh,et al.  Cometary Nuclei and Tidal Disruption: The Geologic Record of Crater Chains on Callisto and Ganymede , 1996 .

[9]  P. Cassen,et al.  On the internal structure of the major satellites of the outer planets , 1979 .

[10]  Giuseppe Mitri,et al.  Convective–conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa , 2005 .

[11]  R. Pappalardo,et al.  Strained craters on Ganymede , 2005 .

[12]  D. Hillel,et al.  The stability of ground ice in the equatorial region of Mars , 1983 .

[13]  D. Stevenson,et al.  Episodic volcanism of tidally heated satellites with application to Io , 1986 .

[14]  Gabriel Tobie,et al.  Tidally heated convection: Constraints on Europa's ice shell thickness , 2003 .

[15]  G. Schubert,et al.  Magnetism and thermal evolution of the terrestrial planets , 1983 .

[16]  V. F. Petrenko,et al.  Physics of Ice , 1999 .

[17]  G. Schubert,et al.  Internal structures of the Galilean satellites , 1981 .

[18]  Steven Soter,et al.  Q in the solar system , 1966 .

[19]  V. Solomatov,et al.  Scaling of temperature‐ and stress‐dependent viscosity convection , 1995 .

[20]  Jürgen Oberst,et al.  Grooved Terrain on Ganymede: First Results from Galileo High-Resolution Imaging , 1998 .

[21]  Michael T. Bland,et al.  The formation of Ganymede's grooved terrain: Numerical modeling of extensional necking instabilities , 2007 .

[22]  F. Nimmo Dynamics of rifting and modes of extension on icy satellites , 2004 .

[23]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[24]  Tilman Spohn,et al.  Thermal histories, compositions and internal structures of the moons of the solar system , 1986 .

[25]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[26]  B. Buffett Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo , 2002 .

[27]  W. McKinnon On convection in ice I shells of outer Solar System bodies, with detailed application to Callisto , 2006 .

[28]  James W. Head,et al.  On the resurfacing of Ganymede by liquid–water volcanism , 2004 .

[29]  Randolph L. Kirk,et al.  Thermal evolution of a differentiated Ganymede and implications for surface features , 1987 .

[30]  David J. Stevenson,et al.  Coupled Orbital and Thermal Evolution of Ganymede , 1997 .

[31]  R. H. Oppermann,et al.  Properties of ordinary water-substance: by N. Ernest Dorsey. 673 pages, illustrations, tables, 16 × 24 cms. New York, Reinhold Publishing Corporation, 1940.Price $15.00. , 1940 .

[32]  J. D. Anderson,et al.  Gravitational constraints on the internal structure of Ganymede , 1996, Nature.

[33]  Martin W. Johnson,et al.  The Oceans, Their Physics, Chemistry and General Biology , 1945 .

[34]  Olivier Grasset,et al.  The Cooling Rate of a Liquid Shell in Titan's Interior , 1996 .

[35]  P. Schenk Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes , 2002, Nature.

[36]  A. Dombard,et al.  Formation of Grooved Terrain on Ganymede: Extensional Instability Mediated by Cold, Superplastic Creep , 2001 .

[37]  Neville H Fletcher,et al.  The Chemical Physics of Ice , 1970 .

[38]  P. H. Gammon,et al.  Elastic constants of ice samples by Brillouin spectroscopy , 1983 .

[39]  S. Peale,et al.  The tides of Io , 1981 .

[40]  D. N. C. Lin,et al.  Tidal Dissipation in Rotating Giant Planets , 2004 .

[41]  Robert T. Pappalardo,et al.  Effective elastic thickness and heat flux estimates on Ganymede , 2001 .

[42]  B. Hallet,et al.  Unstable extension of the lithosphere: A mechanical model for basin-and-range structure , 1983 .

[43]  E. M. Shoemaker,et al.  Craters and basins on Ganymede and Callisto - Morphological indicators of crustal evolution , 1982 .

[44]  Giorgio Ranalli,et al.  Rheology of the earth , 1987 .

[45]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[46]  R. Pappalardo,et al.  Furrow flexure and ancient heat flux on Ganymede , 2004 .

[47]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[48]  H. Melosh,et al.  The temperature of Europa's subsurface water ocean , 2004 .

[49]  William R. Ward,et al.  Formation of the Galilean Satellites: Conditions of Accretion , 2002 .

[50]  R. Pappalardo,et al.  Onset of convection in the icy Galilean satellites: Influence of rheology , 2005 .

[51]  J. Freeman Non-Newtonian stagnant lid convection and the thermal evolution of Ganymede and Callisto , 2006 .

[52]  T V Johnson,et al.  The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results , 1979, Science.

[53]  R. Lindzen,et al.  GRAVITATIONAL TIDES IN THE OUTER PLANETS. II. INTERIOR CALCULATIONS AND ESTIMATION OF THE TIDAL DISSIPATION FACTOR , 1993 .

[54]  Renu Malhotra,et al.  Tidal evolution into the Laplace resonance and the resurfacing of Ganymede , 1997 .

[55]  Robert T. Pappalardo,et al.  Geology of Ganymede , 2004 .

[56]  M. Montagnat,et al.  Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization , 2000 .

[57]  J. Moore,et al.  Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas , 2001, Nature.

[58]  A. Dombard,et al.  Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto , 2006 .

[59]  Michael T. Bland,et al.  The formation of Ganymede's grooved terrain , 2009 .

[60]  William B. McKinnon,et al.  Ganymede and Callisto , 1986 .

[61]  David Morrison,et al.  Satellites of Jupiter , 1982 .

[62]  Timothy Edward Dowling,et al.  Jupiter : the planet, satellites, and magnetosphere , 2004 .

[63]  Stephen H. Kirby,et al.  Friction of ice , 1988 .

[64]  Doris Breuer,et al.  Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean Satellites , 2002 .

[65]  T. Spohn,et al.  Thermal-orbital histories of viscoelastic models of Io (J1) , 1990 .

[66]  S. Peale Origin and evolution of the natural satellites , 1999 .

[67]  P. Schenk,et al.  Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell , 1985 .

[68]  Robert T. Pappalardo,et al.  Tectonic Processes on Europa: Tidal Stresses, Mechanical Response, and Visible Features , 1998 .

[69]  D. Stevenson,et al.  Viscosity of rock-ice mixtures and applications to the evolution of icy satellites☆ , 1983 .

[70]  A. Dollfus,et al.  Ices in the Solar System , 1985 .

[71]  Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body: Implications for Ganymede's tectonic evolution , 1984 .

[72]  W. McKinnon Tectonic deformation of Galileo Regio and limits to the planetary expansion of Ganymede , 1982 .

[73]  M. Golombek Constraints on the expansion of Ganymede and the thickness of the lithosphere , 1982 .

[74]  R. Malhotra Tidal origin of the Laplace resonance and the resurfacing of Ganymede , 1991 .

[75]  M. Ross,et al.  Mercury's thermal history and the generation of its magnetic field , 1988 .

[76]  H. Melosh Global tectonics of a despun planet , 1977 .

[77]  W. McKinnon,et al.  Convection in ice I shells and mantles with self-consistent grain size , 2007 .

[78]  W. McKinnon,et al.  Three-layered models of Ganymede and Callisto: Compositions, structures, and aspects of evolution , 1988 .

[79]  O. Kuskov,et al.  Core Sizes and Internal Structure of Earth's and Jupiter's Satellites , 2001 .

[80]  Louis Moresi,et al.  Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets , 2000 .

[81]  Paul M. Schenk,et al.  Ages and interiors: the cratering record of the Galilean satellites , 2007 .

[82]  G. Tobie,et al.  The production of Ganymede's magnetic field , 2008 .

[83]  J. Head,et al.  The role of extensional instability in creating Ganymede grooved terrain: Insights from Galileo High‐Resolution Stereo Imaging , 1998 .

[84]  M. Montagnat,et al.  Comment on “Superplastic deformation of ice: Experimental observations” by D. L. Goldsby and D. L. Kohlstedt , 2002 .

[85]  P. Helfenstein,et al.  Patterns of Fracture and Tidal Stresses Due to Nonsynchronous Rotation: Implications for Fracturing on Europa , 1984 .

[86]  B. R. Tufts,et al.  Formation of cycloidal features on Europa. , 1999, Science.

[87]  A. Showman,et al.  A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus , 2008 .

[88]  W. Durham RHEOLOGICAL PROPERTIES OF WATER ICE—APPLICATIONS TO SATELLITES OF THE OUTER PLANETS 1 , 2001 .

[89]  Gabriel Tobie,et al.  Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting , 2002 .

[90]  C. Sotin,et al.  Creep of High-Pressure Ice VI , 1985 .

[91]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[92]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[93]  A. Showman,et al.  Thermal convection in ice-I shells of Titan and Enceladus , 2006 .

[94]  Ignacio Mosqueira,et al.  Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites , 2003 .

[95]  W. McKinnon,et al.  Is There Evidence for Polar Wander on Europa , 1996 .

[96]  V. Solomatov,et al.  Onset of convection in fluids with strongly temperature-dependent, power-law viscosity , 2006 .

[97]  Harold F. Levison,et al.  Differential Cratering of Synchronously Rotating Satellites by Ecliptic Comets , 2001 .

[98]  G. Schubert,et al.  Interior composition, structure and dynamics of the Galilean satellites , 2004 .