A Distributed Computational Model of Spatial Memory Anticipation During a Visual Search Task

Some visual search tasks require the memorization of the location of stimuli that have been previously focused. Considerations about the eye movements raise the question of how we are able to maintain a coherent memory, despite the frequent drastic changes in the perception. In this article, we present a computational model that is able to anticipate the consequences of eye movements on visual perception in order to update a spatial working memory.

[1]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[2]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[3]  M. Jeannerod Neural Simulation of Action: A Unifying Mechanism for Motor Cognition , 2001, NeuroImage.

[4]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[5]  Nick Fogt,et al.  The Neurology of Eye Movements, 3rd ed. , 2000 .

[6]  T Moore,et al.  Control of eye movements and spatial attention. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[8]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[9]  P H Schiller,et al.  Visual representations during saccadic eye movements. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Rizzolatti,et al.  Action for perception: a motor-visual attentional effect. , 1999, Journal of experimental psychology. Human perception and performance.

[11]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[12]  D. Spalding The Principles of Psychology , 1873, Nature.

[13]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[14]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[15]  Nicolas P. Rougier,et al.  Emergence of attention within a neural population , 2006, Neural Networks.

[16]  R. Leigh,et al.  The neurology of eye movements , 2006 .

[17]  R. Carpenter Movements of the eyes, 2nd rev. & enlarged ed. , 1988 .

[18]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[19]  M. Posner,et al.  Components of visual orienting , 1984 .

[20]  D. Burr,et al.  Changes in visual perception at the time of saccades , 2001, Trends in Neurosciences.

[21]  S Grillner,et al.  Activity-related calcium dynamics in lamprey motoneurons as revealed by video-rate confocal microscopy , 1995, Neuron.

[22]  Allen Allport,et al.  Visual attention , 1989 .

[23]  Geoffrey E. Hinton,et al.  A general framework for parallel distributed processing , 1986 .

[24]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[25]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[26]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[27]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[28]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[29]  L. Matin,et al.  Saccadic suppression of displacement: Separate influences of saccade size and of target retinal eccentricity , 1997, Vision Research.

[30]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[31]  J. Vitay,et al.  Using neural dynamics to switch attention , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[32]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[33]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[34]  J. G. Taylor,et al.  Neural ‘bubble’ dynamics in two dimensions: foundations , 1999, Biological Cybernetics.

[35]  Daniel J. Simons,et al.  Current Approaches to Change Blindness , 2000 .

[36]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[37]  David Burr,et al.  Eye Movements: Keeping Vision Stable , 2004, Current Biology.

[38]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[39]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[40]  Bart Krekelberg,et al.  Neural Correlates of Saccadic Suppression in Humans , 2004, Current Biology.

[41]  Valerie Brown,et al.  Eye scanning of multi-element displays: II. Saccade planning , 2006, Vision Research.

[42]  F. Hamker A dynamic model of how feature cues guide spatial attention , 2004, Vision Research.

[43]  Carol L Colby,et al.  Active Vision in Parietal and Extrastriate Cortex , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[44]  John M. Findlay,et al.  Eye scanning of multi-element displays: I. Scanpath planning , 2006, Vision Research.

[45]  R. Desimone,et al.  The Role of Neural Mechanisms of Attention in Solving the Binding Problem , 1999, Neuron.

[46]  J. Wolfe Chapter 8 – Visual Attention , 2000 .

[47]  U. Neisser VISUAL SEARCH. , 1964, Scientific American.