A probabilistic approach to phase calibration – I. Effects of source structure on fringe-fitting

We propose a probabilistic framework for performing simultaneous estimation of source structure and fringe-fitting parameters in very long baseline interferometry (VLBI) observations. As a first step, we demonstrate this technique through the analysis of synthetic short-duration Event Horizon Telescope observations of various geometric source models at 230 GHz, in the presence of baseline-dependent thermal noise. We perform Bayesian parameter estimation and model selection between the different source models to obtain reliable uncertainty estimates and correlations between various source and fringe-fitting related model parameters. We also compare the Bayesian posteriors with those obtained using widely used VLBI data reduction packages such as casa and aips, by fringe-fitting 200 Monte Carlo simulations of each source model with different noise realizations, to obtain distributions of the maximum a posteriori estimates. We find that, in the presence of resolved asymmetric source structure and a given array geometry, the traditional practice of fringe-fitting with a point source model yields appreciable offsets in the estimated phase residuals, potentially biasing or limiting the dynamic range of the starting model used for self-calibration. Simultaneously estimating the source structure earlier in the calibration process with formal uncertainties improves the precision and accuracy of fringe-fitting and establishes the potential of the available data, especially when there is little prior information. We also note the potential applications of this method to astrometry and geodesy for specific science cases and the planned improvements to the computational performance and analyses of more complex source distributions.

[1]  L. Blackburn,et al.  Closure Statistics in Interferometric Data , 2019, The Astrophysical Journal.

[2]  Oleg Smirnov,et al.  Radio Interferometric Calibration Using a Complex Student’s t-distribution and Wirtinger Derivatives , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  Daniel C. M. Palumbo,et al.  Studying Black Holes on Horizon Scales with VLBI Ground Arrays , 2019, 1909.01411.

[4]  Arpad Szomoru,et al.  CASA on the fringe: VLBI data processing in the CASA software package , 2019 .

[5]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[6]  Chih-Wei L. Huang,et al.  First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole , 2019 .

[7]  S. T. Timmer,et al.  First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[8]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[9]  Kevin A. Dudevoir,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019, 1906.11239.

[10]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.

[11]  Roger Cappallo,et al.  EHT-HOPS Pipeline for Millimeter VLBI Data Reduction , 2019, The Astrophysical Journal.

[12]  Lindy Blackburn,et al.  rPICARD: A CASA-based calibration pipeline for VLBI data , 2019, Astronomy & Astrophysics.

[13]  Osawa,et al.  The Synergy between VLBI and Gaia astrometry , 2019, Proceedings of 14th European VLBI Network Symposium & Users Meeting — PoS(EVN2018).

[14]  H. Falcke,et al.  The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA , 2019, The Astrophysical Journal.

[15]  Torsten A. Enßlin,et al.  Information Theory for Fields , 2018, Annalen der Physik.

[16]  Edward Higson,et al.  Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation , 2017, Statistics and Computing.

[17]  A. Deller,et al.  A novel search for gravitationally lensed radio sources in wide-field VLBI imaging from the mJIVE-20 survey , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  J. Zwart,et al.  Resolving the blazar CGRaBS J0809+5341 in the presence of telescope systematics , 2016, 1610.03773.

[19]  O. Smirnov,et al.  meqsilhouette: a mm-VLBI observation and signal corruption simulator , 2016, 1608.04521.

[20]  T. Ensslin,et al.  RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy , 2013, 1311.5282.

[21]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[22]  Tx,et al.  Next Generation Very Large Array Memo No. 5: Science Working Groups -- Project Overview , 2015, 1510.06438.

[23]  A. Lasenby,et al.  polychord: next-generation nested sampling , 2015, 1506.00171.

[24]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[25]  M. Kunz,et al.  Bayesian inference for radio observations , 2015, 1501.05304.

[26]  T. L. Grobler,et al.  Calibration artefacts in radio interferometry – I. Ghost sources in Westerbork Synthesis Radio Telescope data , 2014 .

[27]  O. Smirnov,et al.  Calibration artefacts in radio interferometry. I. Ghost sources in WSRT data , 2014, 1402.1373.

[28]  Marco Selig,et al.  Improving self-calibration. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  H. Falcke,et al.  Toward the event horizon—the supermassive black hole in the Galactic Center , 2013, 1311.1841.

[30]  A. Lobanov,et al.  Over-resolution of compact sources in interferometric observations , 2012, 1203.2071.

[31]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[32]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[33]  Torsten A. Ensslin,et al.  Information field theory for cosmological perturbation reconstruction and non-linear signal analysis , 2008, ArXiv.

[34]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[35]  Alan R. Whitney,et al.  The Mark 4 VLBI Correlator: Architecture and Algorithms , 2003 .

[36]  C. Carilli,et al.  Tropospheric phase calibration in millimeter interferometry , 1999, astro-ph/9904248.

[37]  C. Carilli,et al.  Synthesis Imaging in Radio Astronomy II , 1999 .

[38]  R. Sault,et al.  Understanding radio polarimetry. I. Mathematical foundations , 1996 .

[39]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[40]  W. D. Cotton,et al.  Global fringe search techniques for VLBI , 1983 .

[41]  T. Cornwell,et al.  A new method for making maps with unstable radio interferometers , 1981 .

[42]  R. C. Walker,et al.  Mapping radio sources with uncalibrated visibility data , 1980, Nature.

[43]  A. Readhead,et al.  The mapping of compact radio sources from VLBI data. , 1978 .

[44]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[45]  H. Jeffreys The Theory of Probability , 1896 .