Numerical method for the equilibrium configurations of a Maier-Saupe bulk potential in a Q-tensor model of an anisotropic nematic liquid crystal

Article history: Available online 18 May 2021

[1]  R. Nolte,et al.  The development of self-assembled liquid crystal display alignment layers , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Sören Bartels,et al.  Simulation of Q-Tensor Fields with Constant Orientational Order Parameter in the Theory of Uniaxial Nematic Liquid Crystals , 2014 .

[3]  M. Marchetti,et al.  Hydrodynamics of Active Defects: From Order to Chaos to Defect Ordering , 2019, Physical Review X.

[4]  Shawn W. Walker,et al.  FELICITY: A MATLAB/C++ TOOLBOX FOR DEVELOPING , 2017 .

[5]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[6]  Y. Notay An aggregation-based algebraic multigrid method , 2010 .

[7]  Miha Ravnik,et al.  Landau–de Gennes modelling of nematic liquid crystal colloids , 2009 .

[8]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  D. Monselesan,et al.  An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals , 1987 .

[11]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[12]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[13]  Yvan Notay,et al.  Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[14]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[15]  O. Lavrentovich,et al.  Fine structure of the topological defect cores studied for disclinations in lyotropic chromonic liquid crystals , 2017, Nature Communications.

[16]  A. Fernández-Nieves,et al.  Drops and shells of liquid crystal , 2011 .

[17]  Philip J. Bos,et al.  Multidimensional Director Modeling Using the Q Tensor Representation in a Liquid Crystal Cell and Its Application to the π Cell with Patterned Electrodes , 1999 .

[18]  John W. Goodby,et al.  Introduction to Defect Textures in Liquid Crystals , 2012, Handbook of Visual Display Technology.

[19]  K. Bhattacharya,et al.  Elasticity of polydomain liquid crystal elastomers , 2009, 0911.3513.

[20]  Le He,et al.  Magnetically actuated liquid crystals. , 2014, Nano letters.

[21]  M. Humar,et al.  3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. , 2010, Optics express.

[22]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[23]  J. Viñals,et al.  Anisotropic disclination cores in nematic liquid crystals modeled by a self-consistent molecular field theory. , 2020, Physical review. E.

[24]  G. Fredrickson The equilibrium theory of inhomogeneous polymers , 2005 .

[25]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[26]  Shuonan Wu,et al.  On the stability and accuracy of partially and fully implicit schemes for phase field modeling , 2016, Computer Methods in Applied Mechanics and Engineering.

[27]  M. Shelley,et al.  Modeling and simulation of liquid-crystal elastomers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Artem Napov,et al.  Algebraic analysis of aggregation‐based multigrid , 2011, Numer. Linear Algebra Appl..

[29]  P. Bauman,et al.  Regularity and the behavior of eigenvalues for minimizers of a constrained Q-tensor energy for liquid crystals , 2015, 1511.01039.

[30]  P. Bos,et al.  Fast Q-tensor method for modeling liquid crystal director configurations with defects , 2002 .

[31]  N. Abbott,et al.  Nematic-field-driven positioning of particles in liquid crystal droplets. , 2013, Physical review letters.

[32]  S. Žumer,et al.  Knot theory realizations in nematic colloids , 2015, Proceedings of the National Academy of Sciences.

[33]  Jian Sun,et al.  Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition , 2014 .

[34]  M. K. Das,et al.  Fast switching negative dielectric anisotropic multicomponent mixtures for vertically aligned liquid crystal displays , 2015 .

[35]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[36]  Shawn W. Walker,et al.  FELICITY: A Matlab/C++ Toolbox for Developing Finite Element Methods and Simulation Modeling , 2018, SIAM J. Sci. Comput..

[38]  Gu,et al.  Observation of saturn-ring defects around solid microspheres in nematic liquid crystals , 2000, Physical review letters.

[39]  G. Barbero,et al.  On the validity of the Rapini-Papoular surface anchoring energy form in nematic liquid crystals , 1986 .

[40]  M. Sano,et al.  Topological defects control collective dynamics in neural progenitor cell cultures , 2017, Nature.

[41]  E. Gartland Scalings and Limits of Landau-de Gennes Models for liquid crystals: a comment on some Recent analytical Papers , 2015, Math. Model. Anal..

[42]  Tae-Hoon Yoon,et al.  Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes , 2015 .

[43]  P. Biscari,et al.  Ordering effects in electric splay Freedericksz transitions , 2007 .

[44]  M. Berry Electro-Optical and Magneto-Optical Properties of Liquid Crystals , 1984 .

[45]  J. Lagerwall,et al.  A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology , 2012 .

[46]  Daniel T. N. Chen,et al.  Spontaneous motion in hierarchically assembled active matter , 2012, Nature.

[47]  S. SIAMJ.,et al.  AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .

[48]  R. Varga,et al.  Numerical Minimization of the Landau-de Gennes Free Energy: Defects in Cylindrical Capillaries , 1991 .

[49]  Artem Napov,et al.  An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..

[50]  S. Walker On The Correct Thermo-dynamic Potential for Electro-static Dielectric Energy , 2018, 1803.08136.

[51]  S. Žumer,et al.  Liquid crystals: Maximizing memory. , 2011, Nature materials.

[52]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[53]  B. Zalar,et al.  Polymer-dispersed liquid crystal elastomers , 2016, Nature Communications.

[54]  Jia Zhao,et al.  Semi-Discrete Energy-Stable Schemes for a Tensor-Based Hydrodynamic Model of Nematic Liquid Crystal Flows , 2016, Journal of Scientific Computing.

[55]  A. Sonnet,et al.  Dissipative Ordered Fluids: Theories for Liquid Crystals , 2012 .

[56]  Frédéric Hecht,et al.  A mesh adaptivity scheme on the Landau-de Gennes functional minimization case in 3D, and its driving efficiency , 2015, J. Comput. Phys..

[57]  M. Bowick,et al.  Topological active matter , 2020, Nature Reviews Physics.

[58]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[59]  Juan Pablo Borthagaray,et al.  A structure-preserving FEM for the uniaxially constrained Q-tensor model of nematic liquid crystals , 2019 .

[60]  G. R. Luckhurst,et al.  Free Energies in the Landau and Molecular Field Approaches , 1986 .

[61]  T. White,et al.  Voxelated liquid crystal elastomers , 2015, Science.

[62]  Chwee Teck Lim,et al.  Topological defects in epithelia govern cell death and extrusion , 2017, Nature.

[63]  Robert B. Meyer,et al.  FREEDERICKSZ TRANSITION OF A HOMEOTROPIC NEMATIC LIQUID CRYSTAL IN ROTATING MAGNETIC FIELDS , 1975 .

[64]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[65]  Stephen M. Morris,et al.  Liquid-crystal lasers , 2010 .

[66]  Nigel J. Mottram,et al.  Introduction to Q-tensor theory , 2014, 1409.3542.

[67]  Apala Majumdar,et al.  Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory , 2008, European Journal of Applied Mathematics.

[68]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .