Minimum Mean Square Distance Estimation of a Subspace

We consider the problem of subspace estimation in a Bayesian setting. Since we are operating in the Grassmann manifold, the usual approach which consists of minimizing the mean square error (MSE) between the true subspace U and its estimate U may not be adequate as the MSE is not the natural metric in the Grassmann manifold GN,p, i.e., the set of p-dimensional subspaces in RN. As an alternative, we propose to carry out subspace estimation by minimizing the mean square distance between U and its estimate, where the considered distance is a natural metric in the Grassmann manifold, viz. the distance between the projection matrices. We show that the resulting estimator is no longer the posterior mean of U but entails computing the principal eigenvectors of the posterior mean of UUT. Derivation of the minimum mean square distance (MMSD) estimator is carried out in a few illustrative examples including a linear Gaussian model for the data and Bingham or von Mises Fisher prior distributions for U. In all scenarios, posterior distributions are derived and the MMSD estimator is obtained either analytically or implemented via a Markov chain Monte Carlo simulation method. The method is shown to provide accurate estimates even when the number of samples is lower than the dimension of U. An application to hyperspectral imagery is Anally investigated.

[1]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[2]  Peter D. Hoff,et al.  Simulation of the Matrix Bingham–von Mises–Fisher Distribution, With Applications to Multivariate and Relational Data , 2007, 0712.4166.

[3]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[4]  Robert W. Stewart,et al.  The Fisher–Bingham Spatial Correlation Model for Multielement Antenna Systems , 2009, IEEE Transactions on Vehicular Technology.

[5]  Xavier Mestre,et al.  Improved Estimation of Eigenvalues and Eigenvectors of Covariance Matrices Using Their Sample Estimates , 2008, IEEE Transactions on Information Theory.

[6]  Visa Koivunen,et al.  Steepest Descent Algorithms for Optimization Under Unitary Matrix Constraint , 2008, IEEE Transactions on Signal Processing.

[7]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1994, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[8]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[9]  Visa Koivunen,et al.  Conjugate gradient algorithm for optimization under unitary matrix constraint , 2009, Signal Process..

[10]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[11]  Anuj Srivastava,et al.  A Bayesian approach to geometric subspace estimation , 2000, IEEE Trans. Signal Process..

[12]  Petre Stoica,et al.  Performance breakdown of subspace-based methods: prediction and cure , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[15]  Younshik Chung,et al.  Simulation of truncated gamma variables , 1998 .

[16]  K. Mardia,et al.  Maximum Likelihood Estimators for the Matrix Von Mises-Fisher and Bingham Distributions , 1979 .

[17]  Peter D. Ho Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data , 2008 .

[18]  Aleix M. Martínez,et al.  Rotation Invariant Kernels and Their Application to Shape Analysis , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Toshihisa Tanaka,et al.  An Algorithm to Compute Averages on Matrix Lie Groups , 2009, IEEE Transactions on Signal Processing.

[20]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[21]  Michael Werman,et al.  Affine Invariance Revisited , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[23]  John R. Miller,et al.  Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated‐forest hyperspectral data , 2009 .

[24]  Raj Rao Nadakuditi,et al.  The breakdown point of signal subspace estimation , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[25]  Robert Mahony,et al.  Optimization On Manifolds: Methods And Applications , 2010 .

[26]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[27]  John S. Thompson,et al.  Spatial Fading Correlation model using mixtures of Von Mises Fisher distributions , 2009, IEEE Transactions on Wireless Communications.

[28]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[29]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[30]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[31]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[32]  John K. Thomas,et al.  The probability of a subspace swap in the SVD , 1995, IEEE Trans. Signal Process..

[33]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  J. Boutros,et al.  A classification of multiple antenna channels , 2006, 2006 International Zurich Seminar on Communications.

[35]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[36]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[37]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.

[38]  Xavier Mestre,et al.  The role of subspace swap in music performance breakdown , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[39]  Alain Sarlette,et al.  Consensus Optimization on Manifolds , 2008, SIAM J. Control. Optim..

[40]  Bjorn Ottersten,et al.  Exact and Large Sample ML Techniques for Parameter Estimation and Detection in Array Processing , 1993 .

[41]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons , 1990, IEEE Trans. Acoust. Speech Signal Process..

[42]  Jean-Yves Tourneret,et al.  Nonlinear unmixing of hyperspectral images using a generalized bilinear model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[43]  Y. Chikuse Statistics on special manifolds , 2003 .

[44]  Paul Van Dooren,et al.  An efficient particle filtering technique on the Grassmann manifold , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.