Matrix representation of octonions and generalizations
暂无分享,去创建一个
[1] G. C. Joshi,et al. A bimodular representation of ten‐dimensional fermions , 1986 .
[2] Stefano De Leo. Quaternions and special relativity , 1996 .
[3] S. Adler,et al. Quaternionic quantum mechanics and quantum fields , 1995 .
[4] R. Moreno. The zero divisors of the Cayley-Dickson algebras over the real numbers , 1997, q-alg/9710013.
[5] F. Gürsey. Algebraic methods and quark structure , 1975 .
[6] G. C. Joshi,et al. Component states of a composite quaternionic system , 1987 .
[7] J. Osborn. Review: K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative , 1983 .
[8] Konstantin Aleksandrovich Zhevlakov,et al. Rings that are nearly associative , 1982 .
[9] Max Zorn. Alternativkörper und quadratische systeme , 1933 .
[10] G. C. Joshi,et al. Spontaneous symmetry breaking and the Higgs mechanism for quaternion fields , 1987 .
[11] S. Catto,et al. New realizations of hadronic supersymmetry , 1988 .
[12] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[13] W. Ledermann. INTRODUCTION TO LIE ALGEBRAS AND REPRESENTATION THEORY , 1974 .
[14] N. Jacobson. Structure and Representations of Jordan Algebras , 1968 .
[15] Chia-Hsiung Tze,et al. On the Role of Division, Jordan and Related Algebras in Particle Physics , 1996 .