PDM-Nyquist-32QAM for 450-Gb/s Per-Channel WDM Transmission on the 50 GHz ITU-T Grid

We discuss the generation and transmission of 450 Gb/s wavelength-division multiplexed (WDM) channels over the standard 50 GHz ITU-T grid optical network at a net spectral efficiency of 8.4 b/s/Hz. This result is accomplished by the use of Nyquist-shaped, polarization-division-multiplexed (PDM) 32-quadrature amplitude modulation (QAM) and both pre- and post-transmission digital equalization. To overcome the limitation of available digital-to-analog converter bandwidth, a novel method is introduced for the generation of the five-subcarriers of the 450 Gb/s signal. Nearly ideal Nyquist pulse-shaping (roll-off factor = 0.01) enables guard bands of only 200 MHz between subcarriers. To mitigate the narrow optical filtering effects from the 50 GHz-grid reconfigurable optical add-drop multiplexer (ROADM), a broadband optical pulse-shaping method has been proposed and demonstrated. By combined use of electrical and optical shaping techniques, transmission of 5 × 450 Gb/s PDM-Nyquist 32 QAM on the 50 GHz grid over 800 km and one 50 GHz-grid ROADM has been successfully demonstrated.

[1]  M. Tomizawa,et al.  Parallel FEC code in high-speed optical transmission systems , 1999 .

[2]  B. Zhu,et al.  10 × 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[3]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[4]  B. Zhu,et al.  Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber , 2009, 2009 35th European Conference on Optical Communication.

[5]  B. Zhu,et al.  800km transmission of 5×450-Gb/s PDM-32QAM on the 50GHz grid using electrical and optical spectral shaping , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[6]  B. Zhu,et al.  Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-Grid ROADMs , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[7]  S. Chandrasekhar,et al.  Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator , 2010, 36th European Conference and Exhibition on Optical Communication.

[8]  R. Noe,et al.  Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for $M$ -QAM Constellations , 2009, Journal of Lightwave Technology.

[9]  Ting Wang,et al.  64-Tb/s, 8 b/s/Hz, PDM-36QAM Transmission Over 320 km Using Both Pre- and Post-Transmission Digital Signal Processing , 2011, Journal of Lightwave Technology.

[10]  B. Zhu,et al.  10×456-Gb/s DP-16QAM transmission over 8×100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter , 2010, OECC 2010 Technical Digest.

[11]  B. Zhu,et al.  8 450-Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[12]  Bengt-Erik Olsson,et al.  Beyond 100Gbit/s: System implications towards 400G and 1T , 2010, 36th European Conference and Exhibition on Optical Communication.

[13]  Hideaki Tanaka,et al.  400-Gbit/s optical OFDM transmission over 80 km in 50-GHz frequency grid , 2010, 36th European Conference and Exhibition on Optical Communication.

[14]  Xiang Zhou,et al.  An Improved Feed-Forward Carrier Recovery Algorithm for Coherent Receivers With $M$ -QAM Modulation Format , 2010, IEEE Photonics Technology Letters.