A Pieri rule for skew shapes
暂无分享,去创建一个
[1] Marcel Paul Schützenberger,et al. La correspondance de Robinson , 1977 .
[2] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[3] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[4] Frank Sottile,et al. Skew Littlewood–Richardson Rules from Hopf Algebras , 2009 .
[5] L. Manivel. Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence , 1998 .
[6] Frank Sottile,et al. Pieri's formula for flag manifolds and Schubert polynomials , 1996 .
[7] T. Lam. Ribbon tableaux and the Heisenberg algebra , 2003, math/0310250.
[8] JE-OK CHOI,et al. THE REPRESENTATIONS OF THE SYMMETRIC GROUP , 2010 .
[9] A Note on the Multiplication of Hall Functions , 1964 .
[11] Bruce E. Sagan,et al. Robinson-schensted algorithms for skew tableaux , 1990, J. Comb. Theory A.
[12] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[13] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[14] A Pieri-type formula for the K-theory of a flag manifold , 2004, math/0407412.
[15] R. Winkel. On the Multiplication of Schubert Polynomials , 1998 .
[16] Glânffrwd P Thomas. On Schensted's construction and the multiplication of schur functions , 1978 .
[17] Sergey Fomin,et al. Schur Operators and Knuth Correspondences , 1995, J. Comb. Theory, Ser. A.
[18] R. Stanley. Some combinatorial properties of Jack symmetric functions , 1989 .
[19] M. Wodzicki. Lecture Notes in Math , 1984 .
[20] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[21] D. Foata,et al. Combinatoire et Représentation du Groupe Symétrique , 1977 .