A Pieri rule for skew shapes

The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical case.

[1]  Marcel Paul Schützenberger,et al.  La correspondance de Robinson , 1977 .

[2]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[3]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[4]  Frank Sottile,et al.  Skew Littlewood–Richardson Rules from Hopf Algebras , 2009 .

[5]  L. Manivel Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence , 1998 .

[6]  Frank Sottile,et al.  Pieri's formula for flag manifolds and Schubert polynomials , 1996 .

[7]  T. Lam Ribbon tableaux and the Heisenberg algebra , 2003, math/0310250.

[8]  JE-OK CHOI,et al.  THE REPRESENTATIONS OF THE SYMMETRIC GROUP , 2010 .

[9]  A Note on the Multiplication of Hall Functions , 1964 .

[11]  Bruce E. Sagan,et al.  Robinson-schensted algorithms for skew tableaux , 1990, J. Comb. Theory A.

[12]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[13]  D. E. Littlewood,et al.  Group Characters and Algebra , 1934 .

[14]  A Pieri-type formula for the K-theory of a flag manifold , 2004, math/0407412.

[15]  R. Winkel On the Multiplication of Schubert Polynomials , 1998 .

[16]  Glânffrwd P Thomas On Schensted's construction and the multiplication of schur functions , 1978 .

[17]  Sergey Fomin,et al.  Schur Operators and Knuth Correspondences , 1995, J. Comb. Theory, Ser. A.

[18]  R. Stanley Some combinatorial properties of Jack symmetric functions , 1989 .

[19]  M. Wodzicki Lecture Notes in Math , 1984 .

[20]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[21]  D. Foata,et al.  Combinatoire et Représentation du Groupe Symétrique , 1977 .