Decoupling Multivariate Polynomials Using First-Order Information and Tensor Decompositions

We present a method to decompose a set of multivariate real polynomials into linear combinations of univariate polynomials in linear forms of the input variables. The method proceeds by collecting the first-order information of the polynomials in a set of sampling points, which is captured by the Jacobian matrix evaluated at the sampling points. The canonical polyadic decomposition of the three-way tensor of Jacobian matrices directly returns the unknown linear relations as well as the necessary information to reconstruct the univariate polynomials. The conditions under which this decoupling procedure works are discussed, and the method is illustrated on several numerical examples.

[1]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[2]  Johan Schoukens,et al.  Decoupling static nonlinearities in a parallel Wiener-Hammerstein system: A first-order approach , 2015, 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings.

[3]  K. Ranestad,et al.  Varieties of sums of powers , 1998, math/9801110.

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  Andrzej Schinzel On a decomposition of polynomials in several variables , 2002 .

[6]  E. Carlini,et al.  On Waring’s problem for several algebraic forms , 2003 .

[7]  Yves Rolain,et al.  Cross-term Elimination in Parallel Wiener Systems Using a Linear Input Transformation , 2012, IEEE Transactions on Instrumentation and Measurement.

[8]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[9]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[10]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[11]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[12]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[13]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[14]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[15]  K. Usevich Decomposing multivariate polynomials with structured low-rank matrix completion , 2014 .

[16]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[17]  Eric Moreau,et al.  Joint Matrices Decompositions and Blind Source Separation , 2014 .

[18]  J. Berge,et al.  The typical rank of tall three-way arrays , 2000 .

[19]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[20]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[21]  Johan Schoukens,et al.  Identification of systems with localised nonlinearity: From state-space to block-structured models , 2013, Autom..

[22]  Luke Oeding,et al.  Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..

[23]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[24]  Pierre Comon,et al.  Symmetric tensor decomposition , 2009, 2009 17th European Signal Processing Conference.

[25]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[26]  Johan Schoukens,et al.  From coupled to decoupled polynomial representations in parallel Wiener-Hammerstein models , 2013, 52nd IEEE Conference on Decision and Control.

[27]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[28]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[29]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[30]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[31]  Lieven De Lathauwer,et al.  Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[32]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[33]  Jan Swevers,et al.  Identification of nonlinear systems using Polynomial Nonlinear State Space models , 2010, Autom..

[34]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..