Lifting tropical bitangents

Abstract We study lifts of tropical bitangents to the tropicalization of a given complex algebraic curve together with their lifting multiplicities. Using this characterization, we show that generically all the seven bitangents of a smooth tropical plane quartic lift in sets of four to algebraic bitangents. We do this constructively, i.e. we give solutions for the initial terms of the coefficients of the bitangent lines. This is a step towards a tropical proof that a general smooth quartic admits 28 bitangent lines. The methods are also appropriate to count real bitangents; however the conditions to determine whether a tropical bitangent has real lifts are not purely combinatorial.

[1]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[2]  Andreas Gathmann,et al.  Tropical algebraic geometry , 2006 .

[3]  Tropical images of intersection points , 2014, 1403.0548.

[4]  Erwan Brugall'e,et al.  Inflection Points of Real and Tropical Plane Curves , 2011, 1102.2478.

[5]  Omid Amini,et al.  Lifting harmonic morphisms II: tropical curves and metrized complexes , 2014, 1404.3390.

[6]  Xavier Allamigeon,et al.  Tropicalizing the Simplex Algorithm , 2013, SIAM J. Discret. Math..

[7]  Johannes Rau,et al.  First steps in tropical intersection theory , 2007, 0709.3705.

[8]  Theta Characteristics of Tropical K 4 -Curves , 2015, 1503.05776.

[9]  Hannah Markwig,et al.  How to Repair Tropicalizations of Plane Curves Using Modifications , 2014, Exp. Math..

[10]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[11]  Theta characteristics of hyperelliptic graphs , 2015, 1511.07243.

[12]  Grigory Mikhalkin Tropical geometry and its applications , 2006 .

[13]  Eugenii Shustin,et al.  Tropical Algebraic Geometry , 2007 .

[14]  M. Baker,et al.  Degeneration of Linear Series from the Tropical Point of View and Applications , 2015, 1504.05544.

[15]  M. Prest Model‐Theoretic Algebra With particular emphasis on fields, rings, modules , 1993 .

[16]  Kristin M. Shaw,et al.  A Tropical Intersection Product in Matroidal Fans , 2010, SIAM J. Discret. Math..

[17]  Julius Plücker,et al.  Solution d'une question fondamentale concernant la théorie générale des courbes. , 1834 .

[18]  Enumeration of complex and real surfaces via tropical geometry , 2015, 1503.08593.

[19]  D. Jensen,et al.  Tropicalization of theta characteristics, double covers, and Prym varieties , 2016, 1606.02282.

[20]  M. Baker,et al.  Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta , 2013, 1303.4812.

[21]  Bernd Sturmfels,et al.  Quartic curves and their bitangents , 2010, J. Symb. Comput..

[22]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[23]  梶原 健 Tropical toric geometry , 2007 .

[24]  Brian Osserman,et al.  Lifting non-proper tropical intersections , 2011, 1109.5733.

[25]  S. Payne Analytification is the limit of all tropicalizations , 2008, 0805.1916.

[26]  Brian Osserman,et al.  Lifting Tropical Intersections , 2010, 1007.1314.

[27]  M. Baker,et al.  Bitangents of tropical plane quartic curves , 2014, 1404.7568.

[28]  E. Shustin,et al.  Tropical curves with a singularity in a fixed point , 2009, 0909.1827.

[29]  Tropical theta characteristics , 2007, 0712.3205.

[30]  D. Eisenbud,et al.  3264 and all that , 2016 .

[31]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.