An efficient method for calculating dynamical hyperpolarizabilities using real-time time-dependent density functional theory.

In this paper we present a time-domain time-dependent density functional theory (TDDFT) approach to calculate frequency-dependent polarizability and hyperpolarizabilities. In this approach, the electronic degrees of freedom are propagated within the density matrix based TDDFT framework using the efficient modified midpoint and unitary transformation algorithm. We use monochromatic waves as external perturbations and apply the finite field method to extract various orders of the time-dependent dipole moment. By fitting each order of time-dependent dipole to sinusoidal waves with harmonic frequencies, one can obtain the corresponding (hyper)polarizability tensors. This approach avoids explicit Fourier transform and therefore does not require long simulation time. The method is illustrated with application to the optically active organic molecule para-nitroaniline, of which the frequency-dependent polarizability α(-ω; ω), second-harmonic generation β(-2ω; ω, ω), optical rectification β(0; -ω, ω), third-harmonic generation γ(-3ω; ω, ω, ω), and degenerate four-wave mixing γ(-ω; ω, ω, -ω) are calculated.

[1]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[2]  R. Mcweeny Some remarks on multiconfiguration time-dependent Hartree–Fock theory , 1983 .

[3]  Bruce H Robinson,et al.  Rational enhancement of second-order nonlinearity: bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: design, synthesis, and electrooptic activity. , 2008, Journal of the American Chemical Society.

[4]  P. N. Butcher,et al.  The Elements of Nonlinear Optics , 1990 .

[5]  F. Rellich,et al.  Störungstheorie der Spektralzerlegung , 1937 .

[6]  R. Amos Calculation of polarizability derivatives using analytic gradient methods , 1986 .

[7]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[8]  Clifford E. Dykstra,et al.  Derivative Hartree—Fock theory to all orders , 1984 .

[9]  Yaochun Shen Principles of nonlinear optics , 1984 .

[10]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[11]  E. Davidson,et al.  Hyperpolarizability: Calibration of theoretical methods for chloroform, water, acetonitrile, and p-nitroaniline , 2006 .

[12]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[13]  A. Jen,et al.  Rational Design Using Dewar’s Rules for Enhancing the First Hyperpolarizability of Nonlinear Optical Chromophores , 2010 .

[14]  Bertsch,et al.  Time-dependent local-density approximation in real time. , 1996, Physical review. B, Condensed matter.

[15]  J. Hammond,et al.  Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory. , 2007, The Journal of chemical physics.

[16]  D. Jacquemin,et al.  Geometry, dipole moment, polarizability and first hyperpolarizability of polymethineimine: an assessment of electron correlation contributions. , 2004, The Journal of chemical physics.

[17]  Mark A. Ratner,et al.  Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects , 1994 .

[18]  Xiaosong Li,et al.  Efficient first-principles electronic dynamics. , 2011, The Journal of chemical physics.

[19]  B H Robinson,et al.  Comparison of static first hyperpolarizabilities calculated with various quantum mechanical methods. , 2007, The journal of physical chemistry. A.

[20]  Paweł Sałek,et al.  Density-functional theory of linear and nonlinear time-dependent molecular properties , 2002 .

[21]  Guanhua Chen,et al.  Time-dependent density-functional theory/localized density matrix method for dynamic hyperpolarizability. , 2007, The Journal of chemical physics.

[22]  C. Isborn,et al.  Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters. , 2007, The Journal of chemical physics.

[23]  Filipp Furche,et al.  On the density matrix based approach to time-dependent density functional response theory , 2001 .

[24]  G. Bertsch,et al.  Real-space computation of dynamic hyperpolarizabilities , 2001 .

[25]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[26]  Michael J Frisch,et al.  Energy-Specific Linear Response TDHF/TDDFT for Calculating High-Energy Excited States. , 2011, Journal of chemical theory and computation.

[27]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[28]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[29]  Guanhua Chen,et al.  Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain. , 2007, The Journal of chemical physics.

[30]  P. Lazzeretti,et al.  On the theoretical determination of molecular first hyperpolarizability , 1981 .

[31]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[32]  David P. Shelton,et al.  Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase , 1994 .

[33]  N. Handy,et al.  Frequency dependent hyperpolarizabilities with application to formaldehyde and methyl fluoride , 1990 .

[34]  Xavier Andrade,et al.  Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities. , 2007, The Journal of chemical physics.

[35]  Fabio Della Sala,et al.  Efficient methods to calculate dynamic hyperpolarizability tensors by time-dependent density-functional theory , 2002 .

[36]  Brian J. Orr,et al.  Perturbation theory of the non-linear optical polarization of an isolated system , 1971 .

[37]  Poul Jørgensen,et al.  On the Efficiency of Algorithms for Solving Hartree-Fock and Kohn-Sham Response Equations. , 2011, Journal of chemical theory and computation.

[38]  M. Head‐Gordon,et al.  Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone , 1999 .

[39]  Peter Pulay,et al.  Second and third derivatives of variational energy expressions: Application to multiconfigurational self‐consistent field wave functions , 1983 .

[40]  S. Karna,et al.  Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program , 1991 .

[41]  C. Roothaan,et al.  Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems , 1965 .

[42]  N. S. Ostlund,et al.  Self‐Consistent Perturbation Theory. I. Finite Perturbation Methods , 1968 .

[43]  Michel Dupuis,et al.  Electron correlation effects in hyperpolarizabilities of p-nitroaniline , 1993 .

[44]  C. Isborn,et al.  On the gauge invariance of nonperturbative electronic dynamics using the time-dependent Hartree-Fock and time-dependent Kohn-Sham. , 2011, The Journal of chemical physics.

[45]  R. Bartlett,et al.  Molecular hyperpolarizabilities. I. Theoretical calculations including correlation , 1979 .

[46]  Trygve Helgaker,et al.  Hartree–Fock and Kohn–Sham atomic-orbital based time-dependent response theory , 2000 .

[47]  V. Chernyak,et al.  Resonant nonlinear polarizabilities in the time-dependent density functional theory , 2003 .

[48]  Takashi Nakatsukasa,et al.  Real‐time, real‐space implementation of the linear response time‐dependent density‐functional theory , 2006 .

[49]  S. Tretiak,et al.  Enhanced Two‐Photon Absorption of Organic Chromophores: Theoretical and Experimental Assessments , 2008 .

[50]  J J Rehr,et al.  Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules. , 2007, The Journal of chemical physics.

[51]  N. Hush,et al.  Finite-field method calculations of molecular polarisabilities. I. Theoretical basis and limitations of SCF and Galerkin treatments , 1977 .

[52]  Richard M. Martin,et al.  Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals , 2002 .

[53]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[54]  S. Patchkovskii,et al.  Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis. , 2007, The Journal of chemical physics.

[55]  J. Autschbach,et al.  Study of static and dynamic first hyperpolarizabilities using time-dependent density functional quadratic response theory with local contribution and natural bond orbital analysis. , 2006, The Journal of chemical physics.

[56]  James J. P. Stewart,et al.  Calculation of the nonlinear optical properties of molecules , 1990 .

[57]  Geoffrey A. Lindsay,et al.  A Pattern for Increasing the First Hyperpolarizability of a Push−Pull Polyene Dye as Indicated from DFT Calculations† , 2008 .

[58]  Daniel Neuhauser,et al.  Extraction, through filter‐diagonalization, of general quantum eigenvalues or classical normal mode frequencies from a small number of residues or a short‐time segment of a signal. I. Theory and application to a quantum‐dynamics model , 1995 .

[59]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[60]  Dmitri A Romanov,et al.  A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields. , 2005, Physical chemistry chemical physics : PCCP.

[61]  David J. Williams,et al.  Introduction to Nonlinear Optical Effects in Molecules and Polymers , 1991 .

[62]  Antao Chen,et al.  Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect. , 2007, Journal of the American Chemical Society.