Chromosome-level genome assembly of Lilford’s wall lizard, Podarcis lilfordi (Günther, 1874) from the Balearic Islands (Spain)

The Mediterranean lizard Podarcis lilfordi is an emblematic species of the Balearic Islands. The extensive phenotypic diversity among extant isolated populations makes the species a great insular model system for eco-evolutionary studies, as well as a challenging target for conservation management plans. Here we report the first high quality chromosome-level assembly and annotation of the P. lilfordi genome, along with its mitogenome, based on a mixed sequencing strategy (10X Genomics linked reads, Oxford Nanopore Technologies long reads and Hi-C scaffolding) coupled with extensive transcriptomic data (Illumina and PacBio). The genome assembly (1.5 Gb) is highly contiguous (N50 = 90 Mb) and complete, with 99% of the sequence assigned to candidate chromosomal sequences and >97% gene completeness. We annotated a total of 25,663 protein-coding genes, assigning 72% to known functions. Comparison to the genome of the related species Podarcis muralis revealed substantial similarity in genome size, annotation metrics, repeat content, and strong collinearity, despite their evolutionary distance (~18-20 MYA). This genome expands the repertoire of available reptilian genomes and will facilitate the exploration of the molecular and evolutionary processes underlying the extraordinary phenotypic diversity of this insular species, while providing a critical resource for conservation genomics.

[1]  G. Tavecchia,et al.  Life span, growth, senescence and island syndrome: Accounting for imperfect detection and continuous growth , 2022, The Journal of animal ecology.

[2]  J. Castro,et al.  DNA metabarcoding the diet of Podarcis lizards endemic to the Balearic Islands , 2022, Current Zoology.

[3]  Shane A. McCarthy,et al.  YaHS: yet another Hi-C scaffolding tool , 2022, bioRxiv.

[4]  V. Pérez-Mellado,et al.  Faecal Microbiota Divergence in Allopatric Populations of Podarcis lilfordi and P. pityusensis, Two Lizard Species Endemic to the Balearic Islands , 2022, Microbial Ecology.

[5]  M. Genovart,et al.  Contrasting Adult Body-Size in Sister Populations of the Balearic Lizard, Podarcis lilfordi (Günther 1874) Suggests Anthropogenic Selective Pressures , 2021, Herpetological Monographs.

[6]  Felipe A. Simão,et al.  BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes , 2021, Molecular biology and evolution.

[7]  T. Uller,et al.  Population Genomics of Wall Lizards Reflects the Dynamic History of the Mediterranean Basin , 2021, bioRxiv.

[8]  T. Uller,et al.  Extensive introgression and mosaic genomes of Mediterranean endemic lizards , 2021, Nature Communications.

[9]  Erez Lieberman Aiden,et al.  Complete vertebrate mitogenomes reveal widespread repeats and gene duplications , 2021, Genome Biology.

[10]  Sven Rahmann,et al.  Sustainable data analysis with Snakemake , 2021, F1000Research.

[11]  H. Drost,et al.  Sensitive protein alignments at tree-of-life scale using DIAMOND , 2021, Nature Methods.

[12]  Richard P. Brown,et al.  Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard , 2021, Scientific Reports.

[13]  S. Koren,et al.  Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies , 2020, Genome Biology.

[14]  B. Terrasa,et al.  Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation? , 2020 .

[15]  G. Suwala,et al.  Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards , 2020, Genes.

[16]  G. Tavecchia,et al.  Contrasting size-dependent life history strategies of an insular lizard , 2020, Current zoology.

[17]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[18]  Mark Blaxter,et al.  BlobToolKit – Interactive Quality Assessment of Genome Assemblies , 2019, G3: Genes, Genomes, Genetics.

[19]  Andrew G. Clark,et al.  RepeatModeler2: automated genomic discovery of transposable element families , 2019, bioRxiv.

[20]  Jonathan Wood,et al.  Identifying and removing haplotypic duplication in primary genome assemblies , 2019, bioRxiv.

[21]  P. Lymberakis,et al.  Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards , 2019, Scientific Reports.

[22]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[23]  T. Uller,et al.  Regulatory changes in pterin and carotenoid genes underlie balanced color polymorphisms in the wall lizard , 2018, Proceedings of the National Academy of Sciences.

[24]  Blaxter BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations] , 2019 .

[25]  Patricia P. Chan,et al.  tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. , 2019, Methods in molecular biology.

[26]  D. Swarbreck,et al.  Efficient and accurate detection of splice junctions from RNA-seq with Portcullis , 2017, bioRxiv.

[27]  Drew R. Schield,et al.  Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals , 2018, Nature Communications.

[28]  Benjamin P. Vandervalk,et al.  ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers , 2018, bioRxiv.

[29]  Steven J. M. Jones,et al.  Tigmint: correcting assembly errors using linked reads from large molecules , 2018, bioRxiv.

[30]  J. Riera,et al.  Processes shaping gut microbiota diversity in allopatric populations of the endemic lizard Podarcis lilfordi from Menorcan islets (Balearic Islands) , 2018, FEMS microbiology ecology.

[31]  Adam M. Phillippy,et al.  MUMmer4: A fast and versatile genome alignment system , 2018, PLoS Comput. Biol..

[32]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[33]  Mark Blaxter,et al.  BlobTools: Interrogation of genome assemblies , 2017, F1000Research.

[34]  A. Chinnaiyan,et al.  TACO produces robust multi-sample transcriptome assemblies from RNA-seq , 2016, Nature Methods.

[35]  Sergey Koren,et al.  Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii , a progenitor of bread wheat , with the mega-reads algorithm , 2016 .

[36]  Zhiwu Lu,et al.  CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction , 2016, Bioinform..

[37]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[38]  René L. Warren,et al.  LINKS: Scaffolding genome assemblies with kilobase-long nanopore reads , 2015, bioRxiv.

[39]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[40]  M. Borodovsky,et al.  Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm , 2014, Nucleic acids research.

[41]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[42]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[43]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[44]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[45]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[46]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[47]  Hiroaki Iwata,et al.  Benchmarking spliced alignment programs including Spaln2, an extended version of Spaln that incorporates additional species-specific features , 2012, Nucleic acids research.

[48]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[49]  B. Terrasa,et al.  Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi , 2009 .

[50]  J. Martín-Vallejo,et al.  Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain) , 2008 .

[51]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[52]  Enrique Blanco,et al.  Using geneid to Identify Genes , 2002, Current protocols in bioinformatics.

[53]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[54]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[55]  E. Olmo,et al.  Evolution of sex-chromosomes in lacertid lizards , 1987, Chromosoma.

[56]  A. Milla Enciclopedia Virtual de los Vertebrados Españoles , 2002 .

[57]  D. Bauwens,et al.  Reproductive characteristics of the island lacertid lizard Podarcis lilfordi , 2000 .