Comparisons of Spectral Aerosol Single Scattering Albedo in Seoul, South Korea

Abstract. Quantifying aerosol absorption at ultraviolet (UV) wavelengths is important for monitoring air pollution and aerosol amounts using current (e.g., Aura/OMI) and future (e.g., TROPOMI, TEMPO, GEMS, and Sentinel-4) satellite measurements. Measurements of column average atmospheric aerosol single scattering albedo (SSA) are performed on the ground by the NASA AERONET in the visible (VIS) and near-infrared (NIR) wavelengths and in the UV-VIS-NIR by the SKYNET networks. Previous comparison studies have focused on VIS and NIR wavelengths due to the lack of co-incident measurements of aerosol and gaseous absorption properties in the UV. This study compares the SKYNET-retrieved SSA in the UV with the SSA derived from a combination of AERONET, MFRSR, and Pandora (AMP) retrievals in Seoul, South Korea, in spring and summer 2016. The results show that the spectrally invariant surface albedo assumed in the SKYNET SSA retrievals leads to underestimated SSA compared to AMP values at near UV wavelengths. Re-processed SKYNET inversions using spectrally varying surface albedo, consistent with the AERONET retrieval improve agreement with AMP SSA. The combined AMP inversions allow for separating aerosol and gaseous (NO 2 and O 3) absorption and provide aerosol retrievals from the shortest UVB (305 nm) through VIS to NIR wavelengths (870 nm).

[1]  T. Nakajima,et al.  Retrieval of the optical properties of aerosols from aureole and extinction data. , 1983, Applied optics.

[2]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[3]  B. Holben,et al.  Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. , 1996, Applied optics.

[4]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[5]  Teruyuki Nakajima,et al.  Application of the SKYRAD Improved Langley plot method for the in situ calibration of CIMEL Sun-sky photometers. , 2007, Applied optics.

[6]  G. Stenchikov,et al.  The impact of aerosols on solar ultraviolet radiation and photochemical smog. , 1997, Science.

[7]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[8]  Jay R. Herman,et al.  Earth surface reflectivity climatology at 340–380 nm from TOMS data , 1997 .

[9]  T. Nakajima,et al.  Calibration of a sunphotometer by simultaneous measurements of direct-solar and circumsolar radiations. , 1986, Applied optics.

[10]  Evgueni I. Kassianov,et al.  Retrieval of aerosol microphysical properties using surface MultiFilter Rotating Shadowband Radiometer (MFRSR) data: Modeling and observations , 2005 .

[11]  Toshihiko Takemura,et al.  Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign , 2007 .

[12]  A. Bais,et al.  A new approach to correct for absorbing aerosols in OMI UV , 2009 .

[13]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[14]  M. P. Utrillas,et al.  Comparison of AERONET and SKYRAD4.2 inversion products retrieved from a Cimel CE318 sunphotometer , 2011 .

[15]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[16]  S. Madronich,et al.  Retrieval of aerosol single scattering albedo at ultraviolet wavelengths at the T1 site during MILAGRO , 2009 .

[17]  Zhanqing Li,et al.  A simple and efficient method for retrieving surface UV radiation dose rate from satellite , 2000 .

[18]  J. Slusser,et al.  The USDA Ultraviolet Radiation Monitoring Program , 1998 .

[19]  K. F. Boersma,et al.  Quantitative bias estimates for tropospheric NO 2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common standard for East Asia , 2012 .

[20]  장임석 Aerosol direct radiative forcing in East Asia , 2005 .

[21]  V. Ramanathan,et al.  Brown carbon: a significant atmospheric absorber of solar radiation? , 2013 .

[22]  Hiren Jethva,et al.  Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument , 2011 .

[23]  T. Bond Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion , 2001 .

[24]  V. Amiridis,et al.  Aerosol Absorption Retrieval at Ultraviolet Wavelengths in a Complex Environment , 2016 .

[25]  J. Michalsky,et al.  Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. , 1994, Applied optics.

[26]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[27]  G. Carmichael,et al.  Sensitivity of photolysis rates and ozone production in the troposphere to aerosol properties , 1999 .

[28]  R. Martin,et al.  Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects , 2016 .

[29]  Steven Platnick,et al.  Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Steven Platnick,et al.  MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages , 2008 .

[31]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[32]  Teruyuki Nakajima,et al.  Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia , 2007 .

[33]  P. Pilewskie,et al.  Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B , 2009 .

[34]  A. Bais,et al.  Deriving an effective aerosol single scattering albedo from spectral surface UV irradiance measurements , 2005 .

[35]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[36]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[37]  Hiren Jethva,et al.  Global assessment of OMI aerosol single‐scattering albedo using ground‐based AERONET inversion , 2014 .

[38]  G. Janson,et al.  Aerosol column absorption measurements using co-located UV-MFRSR and AERONET CIMEL instruments , 2009, Optical Engineering + Applications.

[39]  E. Kassianov,et al.  Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area , 2008 .

[40]  James F. Gleason,et al.  Characterization of OMI Tropospheric NO2 Measurements in East Asia Based on a Robust Validation Comparison , 2009 .

[41]  C. Schaaf,et al.  Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products , 2018 .

[42]  Philippe Goloub,et al.  Intercomparison between aerosol optical properties by a PREDE skyradiometer and CIMEL sunphotometer over Beijing, China , 2007 .

[43]  Omar Torres,et al.  Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations , 2013 .

[44]  Y. Kaufman,et al.  Spectral absorption properties of aerosol particles from 350–2500nm , 2009 .

[45]  Qilong Min,et al.  The rotating shadowband spectroradiometer (RSS) at SGP , 1999 .

[46]  V. Estellés,et al.  Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET , 2016 .

[47]  Benjamin M. Herman,et al.  Determination of the Effective Imaginary Term of the Complex Refractive Index of Atmospheric Dust by Remote Sensing: The Diffuse-Direct Radiation Method , 1975 .

[48]  T. Nakajima,et al.  Development of a new data-processing method for SKYNET sky radiometer observations , 2012 .

[49]  Alexander Smirnov,et al.  Aeronet's Version 2.0 quality assurance criteria , 2006, SPIE Asia-Pacific Remote Sensing.

[50]  M. Dubey,et al.  Brown carbon in tar balls from smoldering biomass combustion , 2010 .

[51]  Nickolay A. Krotkov,et al.  The version 3 OMI NO 2 standard product , 2017 .

[52]  M. Dubey,et al.  Brownness of organics in aerosols from biomass burning linked to their black carbon content , 2014 .

[53]  K. F. Boersma,et al.  Comparison of OMI NO 2 observations and their seasonal and weekly cycles with ground-based measurements in Helsinki , 2016 .

[54]  Stefano Corradini,et al.  Empirical correction of multifilter rotating shadowband radiometer (MFRSR) aerosol optical depths for the aerosol forward scattering and development of a long-term integrated MFRSR-Cimel dataset at Lampedusa. , 2015, Applied optics.

[55]  S. Madronich,et al.  The influence of aerosols on photochemical smog in Mexico City , 2001 .

[56]  J. Slusser,et al.  Aerosol ultraviolet absorption experiment (2002 to 2004), part 1: ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers , 2005 .

[57]  A. Robinson,et al.  Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions , 2013 .

[58]  Vitali E. Fioletov,et al.  Sulfur dioxide (SO 2 ) vertical column density measurements by Pandoraspectrometer over the Canadian oil sands , 2016 .

[59]  Oleg Dubovik,et al.  Aerosol ultraviolet absorption experiment (2002 to 2004), part 2: absorption optical thickness, refractive index, and single scattering albedo , 2005 .

[60]  Wei Gao,et al.  Ultraviolet and Visible Ground- and Space-based Measurements, Trace Gases, Aerosols and Effects VI , 2009 .

[61]  Gary Hodges,et al.  Optical depth measurements by shadow-band radiometers and their uncertainties. , 2007, Applied optics.

[62]  Jun Wang,et al.  Mesoscale modeling and satellite observation of transport and mixing of smoke and dust particles over northern sub‐Saharan African region , 2013 .

[63]  Barry J. Huebert,et al.  Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE , 2008 .

[64]  Qilong Min,et al.  Retrievals and uncertainty analysis of aerosol single scattering albedo from MFRSR measurements , 2015 .

[65]  T. Takamura,et al.  An Algorithm to Screen Cloud-Affected Data for Sky Radiometer Data Analysis , 2009 .

[66]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[67]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[68]  Thomas W. Kirchstetter,et al.  Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon , 2004 .

[69]  Thomas F. Eck,et al.  Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin , 2016, Scientific Reports.

[70]  Tami C. Bond,et al.  Spectral absorption properties of atmospheric aerosols , 2007 .

[71]  Thomas F. Eck,et al.  GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign , 2015 .

[72]  Assessment of error in aerosol optical depth measured by AERONET due to aerosol forward scattering , 2012 .

[73]  A. Middlebrook,et al.  Brown carbon and internal mixing in biomass burning particles , 2012, Proceedings of the National Academy of Sciences.

[74]  Jay R. Herman,et al.  Partitioning between aerosol and NO2 absorption in the UV spectral region , 2005, SPIE Optics + Photonics.

[75]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[76]  V. K. Saxena,et al.  Aerosol single scattering albedo retrieved from measurements of surface UV irradiance and a radiative transfer model , 2003 .

[77]  J. Mok Multi-instrument approach for measuring spectral aerosol absorption properties in UV and VIS wavelengths , 2017 .

[78]  A. Uchiyama,et al.  The instrument constant of sky radiometers (POM-02) – Part 2: Solid view angle , 2018, Atmospheric Measurement Techniques.

[79]  Zhenzhu Wang,et al.  Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90°N, 117.17°E) from 2007 to 2013 , 2014 .

[80]  M. Jang,et al.  Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight , 2013 .

[81]  C. Brogniez,et al.  Aerosol Single Scattering Albedo retrieval in the UV range: an application to OMI satellite validation , 2009 .

[82]  T. Eck,et al.  Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer , 2008 .

[83]  Maria Tzortziou,et al.  High precision, absolute total column ozone measurements from the Pandora spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI , 2012 .

[84]  David G. Streets,et al.  Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015 , 2015 .

[85]  Qilong Min,et al.  Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer , 2004 .

[86]  James B. Kerr,et al.  Satellite estimation of spectral surface UV irradiance in the presence of tropospheric aerosols , 1998 .

[87]  Tami C. Bond,et al.  Light absorption by organic carbon from wood combustion , 2007 .

[88]  Zhanqing Li,et al.  Long-term global earth surface ultraviolet radiation exposure derived from ISCCP and TOMS satellite measurements , 2003 .

[89]  Woogyung V. Kim,et al.  An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks , 2017 .