Particle Filtering for Attitude Estimation Using a Minimal Local-Error Representation

A computationally efficient spacecraft attitude estimation particle filter is derived. The quaternion is used to represent the global attitude and the modified Rodrigues parameters are used to represent the local errors. The mean attitude is computed through the weighted sum of the modified Rodrigues parameter particles. The idea of progressive correction is employed to ensure the proper operation of the particle filter. Simulation results indicate that the performance of the particle filter exceeds that of the extended Kalman filter or the unscented Kalman filter for very large initialization errors.

[1]  R. Farrenkopf Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators , 1978 .

[2]  E. J. Lefferts,et al.  Kalman Filtering for Spacecraft Attitude Estimation , 1982 .

[3]  Robert A. Langel,et al.  International Geomagnetic Reference Field , 1992 .

[4]  M. Shuster A survey of attitude representation , 1993 .

[5]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[6]  The use of magnetometers for accurate attitude determination , 1997 .

[7]  S. Macmillan,et al.  International Geomagnetic Reference Field—the eighth generation , 2000 .

[8]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[9]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[10]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  F. Markley,et al.  Unscented Filtering for Spacecraft Attitude Estimation , 2003 .

[13]  Freda Kemp,et al.  An Introduction to Sequential Monte Carlo Methods , 2003 .

[14]  J. Crassidis,et al.  Particle Filtering for Sequential Spacecraft Attitude Estimation , 2004 .

[15]  John L. Crassidis,et al.  Attitude estimation for large field-of-view sensors , 2006 .

[16]  Mark L. Psiaki,et al.  Estimation using quaternion probability densities on the unit hypersphere , 2006 .

[17]  Y. Oshman,et al.  Attitude Estimation from Vector Observations Using a Genetic-Algorithm-Embedded Quaternion Particle Filter , 2006 .

[18]  Kristine L. Bell,et al.  A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .

[19]  Y. Oshman,et al.  Averaging Quaternions , 2007 .

[20]  John L. Crassidis,et al.  Survey of nonlinear attitude estimation methods , 2007 .

[21]  Yaakov Oshman,et al.  Fast Particle Filtering for Attitude and Angular-Rate Estimation from Vector Observations , 2009 .