A Microring Resonator Based Negative Permeability Metamaterial Sensor

Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM) layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs). The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

[1]  S. Tretyakov,et al.  Electromagnetic cloaking with metamaterials , 2009 .

[2]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[3]  Jan Koch,et al.  A Microring Resonator Sensor for Sensitive Detection of 1,3,5-Trinitrotoluene (TNT) , 2010, Sensors.

[4]  K. Vahala Optical microcavities , 2003, Nature.

[5]  Tobias Rossmann,et al.  Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement , 2010 .

[6]  Ming Huang,et al.  Microwave Sensor Using Metamaterials , 2011 .

[7]  T. Cui,et al.  Anisotropic metamaterial devices , 2009 .

[8]  Xudong Fan,et al.  Liquid-core optical ring-resonator sensors. , 2006, Optics letters.

[9]  Mool C. Gupta,et al.  Comparative study of 1-D and 2-D metamaterial lens for microwave nondestructive evaluation of dielectric materials , 2011 .

[10]  Hilmi Volkan Demir,et al.  Metamaterial based telemetric strain sensing in different materials , 2010, Optics express.

[11]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[12]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[13]  Jingjing Yang,et al.  Metamaterial electromagnetic concentrators with arbitrary geometries. , 2009, Optics express.

[14]  Xiang Zhang,et al.  Split ring resonator sensors for infrared detection of single molecular monolayers. Appl. Phys. Lett. 95, 043113 , 2009 .

[15]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[16]  Jong-Gwan Yook,et al.  Biosensing using split-ring resonators at microwave regime , 2008 .

[17]  O. Jaksic,et al.  A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance , 2007 .

[18]  F. Shimabukuro,et al.  The Essence of Dielectric Waveguides , 2008 .

[19]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[20]  Jinhui Peng,et al.  SIMULATION AND ANALYSIS OF ASYMMETRIC METAMATERIAL RESONATOR-ASSISTED MICROWAVE SENSOR , 2010 .

[21]  Mattias Beck,et al.  Microcavity Laser Oscillating in a Circuit-Based Resonator , 2010, Science.

[22]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[23]  Vittorio M. N. Passaro,et al.  Ammonia Optical Sensing by Microring Resonators , 2007, Sensors.

[24]  Andrea M. Armani,et al.  Bioconjugation Strategies for Microtoroidal Optical Resonators , 2010, Sensors.

[25]  Andrea Alù,et al.  Dielectric sensing in ε-near-zero narrow waveguide channels , 2008 .

[26]  John E. Heebner,et al.  Optical Microresonators: Theory, Fabrication, and Applications , 2007 .

[27]  A. Dubinov,et al.  Invisible cloaking of material bodies using the wave flow method , 2010 .

[28]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[29]  Sailing He,et al.  On subwavelength and open resonators involving metamaterials of negative refraction index , 2005 .

[30]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[31]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[32]  Jihong Shi,et al.  Modelling and Analysis of Ω-shaped Double Negative Material-assisted Microwave Sensor , 2009 .

[33]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[34]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.