Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes

[1]  D. Macfarlane,et al.  Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage , 2016 .

[2]  M. R. Palacín,et al.  Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes , 2016 .

[3]  M. Forsyth,et al.  Correction: Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts. , 2016, Physical chemistry chemical physics : PCCP.

[4]  M. Armand,et al.  Novel Na+ Ion Diffusion Mechanism in Mixed Organic–Inorganic Ionic Liquid Electrolyte Leading to High Na+ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells. , 2016 .

[5]  J. Hassoun,et al.  Characteristics of an ionic liquid electrolyte for sodium-ion batteries , 2016 .

[6]  S. Ramesh,et al.  Efficiency improvement by incorporating 1-methyl-3-propylimidazolium iodide ionic liquid in gel polymer electrolytes for dye-sensitized solar cells , 2015 .

[7]  Nur Hasyareeda Hassan,et al.  One-pot synthesis nano-hybrid ZrO2-TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application , 2015 .

[8]  Arnab Ghosh,et al.  Effect of plasticizers on ionic conductivity and dielectric relaxation of PEO-LiClO4 polymer electrolyte , 2015 .

[9]  D. Macfarlane,et al.  Gelled ionic liquid sodium ion conductors for sodium batteries , 2015 .

[10]  R. Hagiwara,et al.  Thermal and Transport Properties of Na[N(SO2F)2]–[N-Methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Na Secondary Batteries , 2015 .

[11]  D. Macfarlane,et al.  Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[12]  I. Ward,et al.  Pulsed-Field Gradient NMR Self Diffusion and Ionic Conductivity Measurements for Liquid Electrolytes Containing LiBF4 and Propylene Carbonate , 2014 .

[13]  M. Armand,et al.  Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Azizan Ahmad,et al.  Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photoelectrochemical cell (PEC) application , 2014 .

[15]  D. Macfarlane,et al.  Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications , 2013 .

[16]  Shinji Inazawa,et al.  NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range , 2013 .

[17]  Anthony F. Hollenkamp,et al.  Thermal Behavior of Ionic Liquids Containing the FSI Anion and the Li+ Cation , 2010 .

[18]  Dong Wook Kim,et al.  Enhanced ionic conductivity of intrinsic solid polymer electrolytes using multi-armed oligo(ethylene oxide) plasticizers , 2010 .

[19]  A. Hollenkamp,et al.  Ionic Liquids with the Bis(fluorosulfonyl)imide Anion: Electrochemical Properties and Applications in Battery Technology , 2010 .

[20]  S. Ramesh,et al.  Effect of ethylene carbonate on the ionic conduction in poly(vinylidenefluoride-hexafluoropropylene) based solid polymer electrolytes , 2010 .

[21]  Maria Forsyth,et al.  Transport properties of ionic liquid electrolytes with organic diluents. , 2009, Physical chemistry chemical physics : PCCP.

[22]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[23]  K. Kubota,et al.  Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: Binary mixtures of alkali bis(fluorosulfonyl)amides , 2008 .

[24]  M. Ishikawa,et al.  Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries , 2006 .

[25]  Karim Zaghib,et al.  LiFePO4/polymer/natural graphite: low cost Li-ion batteries , 2004 .

[26]  C. Dustmann Advances in ZEBRA batteries , 2004 .

[27]  P. Johansson,et al.  Mixed Solvent and Polymer Coordination in PAN and PMMA Gel Polymer Electrolytes Studied by Ab Initio Calculations and Raman Spectroscopy , 2003 .

[28]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[29]  D. Macfarlane,et al.  Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy , 1998 .

[30]  I. Ward,et al.  NMR measurements of ionic mobility in model polymer electrolyte solutions , 1998 .

[31]  P. Bruce,et al.  Steady state current flow in solid binary electrolyte cells , 1987 .

[32]  A. L. V. Geet Calibration of methanol nuclear magnetic resonance thermometer at low temperature , 1970 .

[33]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[34]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[35]  Jiulin Wang,et al.  A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries , 2013 .