Model fit versus biological relevance: Evaluating photosynthesis-temperature models for three tropical seagrass species

When several models can describe a biological process, the equation that best fits the data is typically considered the best. However, models are most useful when they also possess biologically-meaningful parameters. In particular, model parameters should be stable, physically interpretable, and transferable to other contexts, e.g. for direct indication of system state, or usage in other model types. As an example of implementing these recommended requirements for model parameters, we evaluated twelve published empirical models for temperature-dependent tropical seagrass photosynthesis, based on two criteria: (1) goodness of fit, and (2) how easily biologically-meaningful parameters can be obtained. All models were formulated in terms of parameters characterising the thermal optimum (Topt) for maximum photosynthetic rate (Pmax). These parameters indicate the upper thermal limits of seagrass photosynthetic capacity, and hence can be used to assess the vulnerability of seagrass to temperature change. Our study exemplifies an approach to model selection which optimises the usefulness of empirical models for both modellers and ecologists alike.

[1]  Gary A Kendrick,et al.  Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem , 2015, Global change biology.

[2]  J. Raven,et al.  Changes in growth, internode distance and nutrient concentrations of the seagrass Halophila ovalis with exposure to sediment sulphide , 2008 .

[3]  S. Phinn,et al.  Multi-temporal mapping of seagrass cover, species and biomass of the Eastern Banks, Moreton Bay, Australia, with links to shapefiles. , 2015 .

[4]  C. Mcroy,et al.  Eelgrass under Arctic Winter Ice , 1969, Nature.

[5]  M Waycott,et al.  Temperature extremes reduce seagrass growth and induce mortality. , 2014, Marine pollution bulletin.

[6]  N. Anten,et al.  Physiological mechanisms in plant growth models: do we need a supra-cellular systems biology approach? , 2013, Plant, cell & environment.

[7]  L. Santamaría,et al.  Photosynthetic temperature responses of fresh- and brackish-water macrophytes: a review , 1997 .

[8]  Catherine J. Collier,et al.  Marine Monitoring Program: Inshore seagrass, annual report for the sampling period 1st June 2013 - 31st May 2014 , 2015 .

[9]  J. Pierre,et al.  A Novel Rate Model of Temperature-Dependent Development for Arthropods , 1999 .

[10]  Chris Roelfsema,et al.  Multi-temporal mapping of seagrass cover, species and biomass: A semi-automated object based image analysis approach , 2014 .

[11]  Roy R. Lewis,et al.  Environmental impacts of dredging on seagrasses: a review. , 2006, Marine pollution bulletin.

[12]  M. Hena,et al.  Photosynthesis of seagrass Cymodocea serrulata (Magnoliophyta/ Potamogetonales/Cymodoceaceae) in field and laboratory , 2001 .

[13]  James Udy,et al.  Unravelling complexity in seagrass systems for management: Australia as a microcosm. , 2015, The Science of the total environment.

[14]  M. Greenway,et al.  Photosynthetic characteristics of seagrasses (Cymodocea serrulata, Thalassia hemprichii and Zostera capricornia) in a low-light environment, with a comparison of leaf-marking and lacunal-gas measurements of productivity , 1993 .

[15]  J. Thébault Étude expérimentale de la nutrition d'un copépode commun (Temora stylifera Dana). Effets de la température et de la concentration de nourriture , 1985 .

[16]  C. Collier,et al.  Responses of three tropical seagrass species to CO2 enrichment , 2015 .

[17]  D. Moriarty,et al.  Lacunal gas discharge as a measure of productivity in the seagrasses Zostera capricorni, Cymodocea serrulata and Syringodium isoetifolium , 1987 .

[18]  Matthew P. Adams,et al.  A biophysical representation of seagrass growth for application in a complex shallow-water biogeochemical model , 2016 .

[19]  Chris Roelfsema,et al.  Challenges of remote sensing for quantifying changes in large complex seagrass environments , 2013 .

[20]  Henry Eyring,et al.  The theory of rate processes in biology and medicine , 1974 .

[21]  Weikai Yan,et al.  An Equation for Modelling the Temperature Response of Plants using only the Cardinal Temperatures , 1999 .

[22]  Paul R. Martin,et al.  Impacts of climate warming on terrestrial ectotherms across latitude , 2008, Proceedings of the National Academy of Sciences.

[23]  R. Craigen,et al.  Improved Rate Model of Temperature-Dependent Development by Arthropods , 1995 .

[24]  Ole Pedersen,et al.  Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration. , 2016, The New phytologist.

[25]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[26]  Marta Estrada,et al.  Marine ecological processes (2nd edn): by I. Valiela Springer-Veriag, 1995. DM98.00 hbk (xiv + 686 pages) ISBN 0 387 943218 , 1996 .

[27]  C. Willmott,et al.  A refined index of model performance , 2012 .

[28]  J. Borum,et al.  Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina) , 2011 .

[29]  M. Koch,et al.  Synergistic effects of high temperature and sulfide on tropical seagrass , 2007 .

[30]  Robert J. Orth,et al.  Assessing Water Quality with Submersed Aquatic Vegetation , 1993 .

[31]  Jerald B. Johnson,et al.  Model selection in ecology and evolution. , 2004, Trends in ecology & evolution.

[32]  Len J. McKenzie,et al.  Composite of coastal seagrass meadows in Queensland, Australia - November 1984 to June 2010 , 2014 .

[33]  P. Damos,et al.  Temperature-Driven Models for Insect Development and Vital Thermal Requirements , 2012 .

[34]  Catherine J. Collier,et al.  Thermal tolerance of two seagrass species at contrasting light levels: Implications for future distribution in the Great Barrier Reef , 2011 .

[35]  Matthew P. Adams,et al.  Prioritizing localized management actions for seagrass conservation and restoration using a species distribution model , 2016 .

[36]  Ivan Valiela,et al.  Marine Ecological Processes , 1984, Springer Advanced Texts in Life Sciences.

[37]  Trevor Platt,et al.  Mathematical formulation of the relationship between photosynthesis and light for phytoplankton , 1976 .

[38]  T. Berendonk,et al.  Thermal performance curves of Paramecium caudatum: a model selection approach. , 2011, European journal of protistology.

[39]  Carolyn R. Bertozzi,et al.  Methods and Applications , 2009 .

[40]  S. Beer,et al.  Effects of light and pressure on photosynthesis in two seagrasses , 1982 .

[41]  P. Cunningham Basic Microcomputer Models in Biology , 1983 .

[42]  C. Collier,et al.  Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification , 2016, PloS one.

[43]  S. Park,et al.  Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review , 2007 .

[44]  R. Tian,et al.  Toward standard parameterizations in marine biological modeling , 2006 .

[45]  N. Marbà,et al.  Mediterranean seagrass vulnerable to regional climate warming , 2012 .

[46]  K. Moore,et al.  Eelgrass survival in two contrasting systems: role of turbidity and summer water temperatures , 2012 .

[47]  P. Room Equations relating growth and uptake of nitrogen by Salvinia molesta to temperature and the availability of nitrogen , 1986 .

[48]  S. Beer,et al.  Measuring seagrass photosynthesis: methods and applications , 2009 .

[49]  Núria Marbà,et al.  Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality , 2009 .

[50]  W. Dennison,et al.  Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.) , 1986 .

[51]  A. N. Stokes,et al.  Model for bacterial culture growth rate throughout the entire biokinetic temperature range , 1983, Journal of bacteriology.

[52]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[53]  Len J. McKenzie,et al.  Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature , 2006 .

[54]  James W. Fourqurean,et al.  Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum , 1991 .

[55]  R. Roijackers,et al.  A simple equation for describing the temperature dependent growth of free-floating macrophytes , 2006 .

[56]  Peter J Mumby,et al.  Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise , 2013, Global change biology.

[57]  S. Papert Implications for the future. , 1999, The Turkish journal of pediatrics.

[58]  C. Critchley,et al.  Light response of D1 turnover and photosystem II efficiency in the seagrassZostera capricorni , 2004, Planta.

[59]  A. Burd,et al.  Field verification of a light-driven model of biomass changes in the seagrass Halodule wrightii , 2001 .

[60]  M. Rasheed,et al.  Long-term climate-associated dynamics of a tropical seagrass meadow: implications for the future , 2011 .