Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars

We discuss the production of ultra-high-energy cosmic ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call "nuclear survival" -- typically found in low-luminosity BL Lacs, and "nuclear cascade" -- typically found in high-luminosity FSRQs. We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency peaked BL Lacs (HBLs) tend to produce CRs, and HL-FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.

[1]  E. Parizot,et al.  UHECR acceleration at GRB internal shocks , 2014, 1409.1271.

[2]  S. Hönig,et al.  Active galactic nuclei dust tori at low and high luminosities , 2007 .

[3]  Florentin Millour,et al.  Mapping the radial structure of AGN tori , 2011, 1110.4290.

[4]  P. Auger Observation of a Large-scale Anisotropy in the Arrival Directions of Cosmic Rays above 8×1018 eV , 2017 .

[5]  G. Bonnoli,et al.  Evidence for an axion-like particle from PKS 1222+216? , 2012, 1202.6529.

[6]  Shan Gao,et al.  Particle diffusion and localized acceleration in inhomogeneous AGN jets – II. Stochastic variation , 2014, 1603.00900.

[7]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[8]  J. C. D'iaz-V'elez,et al.  THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX , 2016, 1611.03874.

[9]  F. Spanier,et al.  SIMPLIFIED MODELS FOR PHOTOHADRONIC INTERACTIONS IN COSMIC ACCELERATORS , 2010, 1002.1310.

[10]  M. Salvato,et al.  The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS , 2009, 0912.4166.

[11]  G. Blumenthal Energy loss of high-energy cosmic rays in pair-producing collisions with ambient photons , 1970 .

[12]  Tum,et al.  Extreme blazars as counterparts of IceCube astrophysical neutrinos , 2016, 1601.06550.

[13]  M. Bustamante,et al.  UHECR ESCAPE MECHANISMS FOR PROTONS AND NEUTRONS FROM GAMMA-RAY BURSTS, AND THE COSMIC-RAY–NEUTRINO CONNECTION , 2013, 1301.6163.

[14]  R. Blandford,et al.  Pair cascades in extragalactic jets. 1: Gamma rays , 1995 .

[15]  G. Fossati,et al.  A unifying view of the spectral energy distributions of blazars , 1998 .

[16]  G. Ghisellini,et al.  The blazar sequence: a new perspective , 2008, 0802.1918.

[17]  Andrew C. Fabian,et al.  Broad Iron Lines in Active Galactic Nuclei , 2000 .

[18]  A. Mastichiadis,et al.  A hadronic minute-scale GeV flare from quasar 3C 279? , 2016, 1612.05699.

[19]  A. Fedynitch,et al.  Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays , 2016, Scientific Reports.

[20]  K. Bechtol,et al.  THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND AND IMPLICATIONS FOR DARK MATTER ANNIHILATION , 2015, 1501.05301.

[21]  G. Ghisellini,et al.  High-energy cosmic neutrinos from spine-sheath BL Lac jets , 2014, 1411.2783.

[22]  P. Schiffer,et al.  CRPropa 2.0 -- a Public Framework for Propagating High Energy Nuclei, Secondary Gamma Rays and Neutrinos , 2012, 1206.3132.

[23]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[24]  B. Lott,et al.  EQUIPARTITION GAMMA-RAY BLAZARS AND THE LOCATION OF THE GAMMA-RAY EMISSION SITE IN 3C 279 , 2013, 1304.6680.

[25]  Xiang-Yu Wang,et al.  Search for GeV and X-Ray Flares Associated with the IceCube Track-like Neutrinos , 2016, 1611.03182.

[26]  Paolo Padovani,et al.  Photohadronic origin of $\boldsymbol {\gamma }$-ray BL Lac emission: implications for IceCube neutrinos , 2015, 1501.07115.

[27]  Athens,et al.  TIME DEPENDENT HADRONIC MODELING OF FLAT SPECTRUM RADIO QUASARS , 2015, 1502.03950.

[28]  T. Totani,et al.  THE BLAZAR SEQUENCE AND THE COSMIC GAMMA-RAY BACKGROUND RADIATION IN THE FERMI ERA , 2008, 0810.3580.

[29]  T. Hebbeker,et al.  Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV , 2017, Science.

[30]  B. Peters Primary cosmic radiation and extensive air showers , 1961 .

[31]  G. Ghisellini,et al.  The spectrum of the broad-line region and the high-energy emission of powerful blazars , 2008, 0802.0871.

[32]  J. P. Harding,et al.  Contribution of blazars to the extragalactic diffuse gamma-ray background and their future spatial resolution , 2010, 1012.1247.

[33]  C. I. O. Technology.,et al.  Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources , 2006, astro-ph/0612702.

[34]  Yasuyuki T. Tanaka,et al.  BARYON LOADING EFFICIENCY AND PARTICLE ACCELERATION EFFICIENCY OF RELATIVISTIC JETS: CASES FOR LOW LUMINOSITY BL LACS , 2016, 1603.07623.

[35]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[36]  G. Ghisellini,et al.  The Fermi blazar sequence , 2017, 1702.02571.

[37]  Sommers,et al.  High-energy neutrinos from active galactic nuclei. , 1991, Physical review letters.

[38]  Felix A. Aharonian,et al.  GAMMA-RAY FLARES FROM RED GIANT/JET INTERACTIONS IN ACTIVE GALACTIC NUCLEI , 2010, 1005.5252.

[39]  P. O. Hulth,et al.  First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.

[40]  D. Thompson,et al.  Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event , 2016, Nature Physics.

[41]  C. Dermer,et al.  Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence , 2014, 1403.4089.

[42]  W. Winter,et al.  Systematics in the interpretation of aggregated neutrino flux limits and flavor ratios from gamma-ray bursts , 2011, 1107.5583.

[43]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[44]  S. Coenders,et al.  Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos , 2016, 1611.06022.

[45]  T. Hebbeker,et al.  Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory , 2016 .

[46]  Gerd Weigelt,et al.  The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer , 2010, 1012.5359.

[47]  K. Murase,et al.  High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications , 2017, 1706.00391.

[48]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[49]  G. Ghisellini,et al.  TeV BL Lac objects at the dawn of the Fermi era , 2009, 0909.0651.

[50]  G. Ghisellini,et al.  STRUCTURED JETS IN BL LAC OBJECTS: EFFICIENT PeV NEUTRINO FACTORIES? , 2014, 1407.0907.

[51]  J. Heinze,et al.  COSMOGENIC NEUTRINOS CHALLENGE THE COSMIC-RAY PROTON DIP MODEL , 2015, 1512.05988.

[52]  Heiko Geenen,et al.  IceCube Collaboration , 2005 .

[53]  H. T. Liu,et al.  Absorption of 10-200 GeV Gamma Rays by Radiation from Broad-Line Regions in Blazars , 2006, 0807.3135.

[54]  T. Totani,et al.  Prospects for Very High Energy Blazar Survey by the Next Generation Cherenkov Telescopes , 2010, 1002.4782.

[55]  Yasuyuki T. Tanaka,et al.  THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE , 2015, 1501.06054.

[56]  Shan Gao,et al.  On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars , 2016, 1610.05306.

[57]  M. Elitzur,et al.  EMISSION FROM HOT DUST IN THE INFRARED SPECTRA OF GAMMA-RAY BRIGHT BLAZARS , 2011, 1103.1682.

[58]  A. Supanitsky Implications of gamma-ray observations on proton models of ultrahigh energy cosmic rays , 2016, 1607.00290.