Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels

Synchronization of coupled oscillators at the transition between classical physics and quantum physics has become an emerging research topic at the crossroads of nonlinear dynamics and nanophotonics. We study this unexplored field by using quantum dot microlasers as optical oscillators. Operating in the regime of cavity quantum electrodynamics (cQED) with an intracavity photon number on the order of 10 and output powers in the 100 nW range, these devices have high β-factors associated with enhanced spontaneous emission noise. We identify synchronization of mutually coupled microlasers via frequency locking associated with a sub-gigahertz locking range. A theoretical analysis of the coupling behavior reveals striking differences from optical synchronization in the classical domain with negligible spontaneous emission noise. Beyond that, additional self-feedback leads to zero-lag synchronization of coupled microlasers at ultra-low light levels. Our work has high potential to pave the way for future experiments in the quantum regime of synchronization.The synchronisation of optical cavities in the quantum regime is still relatively unexplored. Here, Kreinberg et al. investigate the coupling behaviour of two quantum dot microlasers and find that spontaneous emission noise from cavity QED effects plays an important role.

[1]  M. C. Soriano,et al.  Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers , 2013 .

[2]  Christoph Strunk,et al.  Superinsulator and quantum synchronization , 2008, Nature.

[3]  Eckehard Schöll,et al.  Influence of carrier lifetimes on the dynamical behavior of quantum-dot lasers subject to optical feedback. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  52 , 2018, The Devil's Fork.

[5]  N. Lörch,et al.  Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators. , 2017, Physical review letters.

[6]  Christian Schneider,et al.  Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers , 2016, Nature Communications.

[7]  이종복,et al.  20 , 1995, Magical Realism for Non-Believers.

[8]  I Fischer,et al.  Synchronization of delay-coupled oscillators: a study of semiconductor lasers. , 2005, Physical review letters.

[9]  J. Rarity,et al.  HIGH Q MODES IN ELLIPTICAL MICROCAVITY PILLARS , 2007 .

[10]  F. Raineri,et al.  Asymmetric mode scattering in strongly coupled photonic crystal nanolasers , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[11]  Hugo Thienpont,et al.  Deterministic polarization chaos from a laser diode , 2013 .

[12]  Eric Chang,et al.  49 , 2019, Critical Care Medicine.

[13]  H. Risken,et al.  Quantum noise in ring-laser gyros. II. Numerical results , 1982 .

[14]  Paul C Bressloff,et al.  Effects of demographic noise on the synchronization of a metapopulation in a fluctuating environment. , 2011, Physical review letters.

[15]  Benjamin Lingnau,et al.  Nonlinear and Nonequilibrium Dynamics of Quantum-Dot Optoelectronic Devices , 2015 .

[16]  M. Kamp,et al.  Mode-switching induced super-thermal bunching in quantum-dot microlasers , 2016 .

[17]  Quantum Noise in Ring-Laser Gyroscopes , 1984 .

[18]  Daan Lenstra,et al.  Compound Laser Modes of Mutually Delay-Coupled Lasers , 2006, SIAM J. Appl. Dyn. Syst..

[19]  M. Kamp,et al.  A Pulsed Nonclassical Light Source Driven by an Integrated Electrically Triggered Quantum Dot Microlaser , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  A. Amann,et al.  Wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback , 2012, 1207.2405.

[21]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[22]  Christian Schneider,et al.  Low threshold electrically pumped quantum dot-micropillar lasers , 2008 .

[23]  Eckehard Schöll,et al.  Quantum-Dot Lasers—Desynchronized Nonlinear Dynamics of Electrons and Holes , 2009 .

[24]  M. Kamp,et al.  Unconventional collective normal-mode coupling in quantum-dot-based bimodal microlasers , 2015 .

[25]  Haosu Luo,et al.  Strain-mediated electric-field control of resistance in the La[sub 0.85]Sr[sub 0.15]MnO₃/0.7Pb(Mg[sub ⅓]Nb[sub ⅔])O₃-0.3PbTiO₃ structure , 2007 .

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[27]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[28]  Jesper Mørk,et al.  Rate equation description of quantum noise in nanolasers with few emitters , 2018 .

[29]  Technische Universitat Berlin,et al.  Intensity fluctuations in bimodal micropillar lasers enhanced by quantum-dot gain competition , 2013, 1301.3417.

[30]  A. E. Motter,et al.  Synchronization in Small Networks of Time-delay Coupled Chaotic Diode Lasers References and Links , 2022 .

[31]  Christoph Bruder,et al.  Quantum synchronization of two Van der Pol oscillators , 2014, 1406.7134.

[32]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[33]  Florian Marquardt,et al.  Collective dynamics in optomechanical arrays , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[34]  Christian Schneider,et al.  Exploring the Photon-Number Distribution of Bimodal Microlasers with a Transition Edge Sensor , 2017, Physical Review Applied.

[35]  Ingo Fischer,et al.  Synchronization scenario of two distant mutually coupled semiconductor lasers , 2004 .

[36]  Wolfgang Kinzel,et al.  Observing chaos for quantum-dot microlasers with external feedback. , 2011, Nature communications.

[37]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[38]  Jan Danckaert,et al.  Bubbling in delay-coupled lasers. , 2009 .

[39]  Christian Schneider,et al.  Injection locking of quantum dot microlasers operating in the few photon regime , 2016, 1604.02817.

[40]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[41]  P. McEuen,et al.  Synchronization of micromechanical oscillators using light , 2011, IEEE Photonic Society 24th Annual Meeting.

[42]  Yasuhiko Arakawa,et al.  Thresholdless quantum dot nanolaser. , 2017, Optics express.

[43]  Daniel Brunner,et al.  Bidirectional private key exchange using delay-coupled semiconductor lasers. , 2016, Optics letters.

[44]  M. Kamp,et al.  Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback. , 2018, Optics express.

[45]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[46]  C. Mirasso,et al.  Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Wolfgang Kinzel,et al.  Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography. , 2010, Optics express.

[48]  Pere Colet,et al.  Cryptography using optical chaos/Cryptographie par chaos optique Synchronization properties of chaotic semiconductor lasers and applications to encryption , 2004 .

[49]  A. Winfree The geometry of biological time , 1991 .

[50]  B. Legrand,et al.  Optical study of GaAs/AlAs pillar microcavities with elliptical cross section , 1998 .

[51]  Leader-laggard relationship of chaos synchronization in mutually coupled vertical-cavity surface-emitting lasers with time delay. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  V. Vedral,et al.  Squeezing Enhances Quantum Synchronization. , 2018, Physical review letters.

[53]  دکتر فرساد ایمانی,et al.  11 , 1900, You Can Cross the Massacre on Foot.

[54]  Karin Hinzer,et al.  Quantum dot semiconductor lasers with optical feedback , 2004 .

[55]  Guillaume Huyet,et al.  Transition from unidirectional to delayed bidirectional coupling in optically coupled semiconductor lasers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Tamas Vicsek,et al.  A question of scale , 2001, Nature.

[57]  Winful,et al.  Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. , 1990, Physical review letters.

[58]  Paul Mandel,et al.  Dynamical properties of lasers coupled face to face. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  Isabelle Sagnes,et al.  Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers , 2014, Nature Photonics.

[60]  L. Marton,et al.  Light and Matter II , 1959 .

[61]  B. A. Brown,et al.  Mass measurements of the neutron-deficient 41Ti, 45Cr, 49Fe, and 53Ni nuclides: first test of the isobaric multiplet mass equation in f p-shell nuclei. , 2012, Physical review letters.

[62]  M. Sciamanna,et al.  Mode Competition Induced by Optical Feedback in Two-Color Quantum Dot Lasers , 2013, IEEE Journal of Quantum Electronics.

[63]  A Mari,et al.  Measures of quantum synchronization in continuous variable systems. , 2013, Physical review letters.

[64]  Marc Timme,et al.  Classical synchronization indicates persistent entanglement in isolated quantum systems , 2017, Nature Communications.

[65]  Roberta Zambrini,et al.  Quantum Correlations and Synchronization Measures , 2016, 1610.05060.

[66]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[67]  C. Mirasso,et al.  Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. , 2001, Physical review letters.

[68]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[69]  C. Bruder,et al.  Quantum Synchronization and Entanglement Generation. , 2018, Physical review letters.

[70]  V. M. Ghete,et al.  Observation of the Associated Production of a Single Top Quark and a W Boson in pp Collisions at √s=8 TeV , 2014, 1401.2942.

[71]  G. Van der Sande,et al.  The effects of stress, temperature, and spin flips on polarization switching in vertical-cavity surface-emitting lasers , 2006, IEEE Journal of Quantum Electronics.

[72]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[73]  Andrew G. Glen,et al.  APPL , 2001 .

[74]  M. Roukes,et al.  Phase synchronization of two anharmonic nanomechanical oscillators. , 2013, Physical review letters.

[75]  Zach DeVito,et al.  Opt , 2017 .

[76]  Haiying Shen,et al.  TOP , 2019, Encyclopedia of Autism Spectrum Disorders.

[77]  Raul Vicente,et al.  Zero-lag long-range synchronization via dynamical relaying. , 2006, Physical review letters.

[78]  K. Lüdge,et al.  Stability of Optically Injected Two‐State Quantum‐Dot Lasers , 2017 .

[79]  Gerardo Adesso,et al.  Lectures on General Quantum Correlations and their Applications , 2017 .

[80]  M. Kamp,et al.  Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation , 2016, 1612.04312.