Simulation study of cone-in-shell target for indirect-drive ion fast ignition concept under the theory of an effective interaction potential

[1]  Mahsa Mehrangiz Application of encapsulated hollow gold nanocluster targets for high-quality and quasi-monoenergetic ions generation , 2021, Plasma Physics and Controlled Fusion.

[2]  Mahsa Mehrangiz Enhanced quasi-monoenergetic ions generation: Based on gold nanoparticles application in gas-filled nanosphere targets , 2021, Physics of Plasmas.

[3]  D. Hoffmann,et al.  Observation of a high degree of stopping for laser-accelerated intense proton beams in dense ionized matter , 2020, Nature Communications.

[4]  S. Khoshbinfar,et al.  The impact Of impurity ion in deuterium-tritium fuel on the energy deposition pattern Of The Proton Ignitor Beam , 2020 .

[5]  S. Baalrud,et al.  Viscosity of the magnetized strongly coupled one-component plasma. , 2020, Physical review. E.

[6]  H. J. Liu,et al.  Enhanced energy coupling for indirect-drive fast-ignition fusion targets , 2020 .

[7]  S. Baalrud,et al.  Mean force kinetic theory applied to self-diffusion in supercritical Lennard-Jones fluids. , 2020, The Journal of chemical physics.

[8]  W. Kang,et al.  Stopping power of hot dense deuterium-tritium plasmas mixed with impurities to charged particles. , 2020, Physical review. E.

[9]  T. Ramazanov,et al.  Energy loss and friction characteristics of electrons at warm dense matter and non-ideal dense plasma conditions , 2020, 2002.06811.

[10]  G. Faussurier Electron-ion coupling factor for temperature relaxation in dense plasmas. , 2020, Physical review. E.

[11]  Yong Hou,et al.  Benchmarking the effective one-component plasma model for warm dense neon and krypton within quantum molecular dynamics simulation. , 2020, Physical review. E.

[12]  B. B. Zelener,et al.  Molecular dynamics calculation of thermal conductivity and shear viscosity in two-component fully ionized strongly coupled plasma , 2020 .

[13]  J. Vorberger,et al.  Strongly coupled electron liquid: Ab initio path integral Monte Carlo simulations and dielectric theories , 2019, Physical Review B.

[14]  Suat Dengiz,et al.  High temperature behavior of non-local observables in boosted strongly coupled plasma: a holographic study , 2019, The European Physical Journal C.

[15]  L. Divol,et al.  Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas. , 2019, Physical review letters.

[16]  S. Khoshbinfar,et al.  On the evaluation of ignition threshold in proton‐carbon hybrid ignitor beam proposal , 2019, Contributions to Plasma Physics.

[17]  Y. Ding,et al.  Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures , 2018, Physical Review B.

[18]  Y. Ding,et al.  Ab Initio Studies on the Stopping Power of Warm Dense Matter with Time-Dependent Orbital-Free Density Functional Theory. , 2018, Physical review letters.

[19]  S. Khoshbinfar Longitudinal instabilities of the experimentally generated laser accelerated ion beam relevant to fast ignition , 2017 .

[20]  M. Bonitz,et al.  Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas. , 2017, The Journal of chemical physics.

[21]  S. Baalrud,et al.  Pair Correlation Functions of Strongly Coupled Two-Temperature Plasma , 2017, 1707.01509.

[22]  M. Basko,et al.  Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter , 2017, Nature Communications.

[23]  M. Murakami,et al.  On intense proton beam generation and transport in hollow cones , 2017 .

[24]  J. Daligault,et al.  Effective potential kinetic theory for strongly coupled plasmas , 2016 .

[25]  Farhat Beg,et al.  Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes , 2016 .

[26]  Gilbert W. Collins,et al.  Development of a WDM platform for charged-particle stopping experiments , 2016 .

[27]  J. D. Moody,et al.  Inertially confined fusion plasmas dominated by alpha-particle self-heating , 2016, Nature Physics.

[28]  L. Reining,et al.  Ab initio electronic stopping power of protons in bulk materials , 2016 .

[29]  S. Ruan,et al.  Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target , 2016 .

[30]  M. Basko,et al.  Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  R. G. Evans,et al.  Contemporary particle-in-cell approach to laser-plasma modelling , 2015 .

[32]  Gilbert W. Collins,et al.  Measurement of charged-particle stopping in warm dense plasma. , 2015, Physical review letters.

[33]  J. Daligault,et al.  Extending plasma transport theory to strong coupling through the concept of an effective interaction potentiala) , 2014, 1403.1882.

[34]  D. Neely,et al.  Experimental investigation of hole boring and light sail regimes of RPA by varying laser and target parameters , 2013 .

[35]  F. Graziani,et al.  Molecular dynamics simulations of classical stopping power. , 2013, Physical review letters.

[36]  R. Freeman,et al.  Coupling of high-intensity laser light to fast electrons in cone-guided fast ignition. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Wolfgang Enghardt,et al.  High proton energies from cone targets: electron acceleration mechanisms , 2012 .

[38]  V. Cherepenin,et al.  Acceleration of ions with a nonadiabatic linearly polarized laser pulse , 2011 .

[39]  Rafael Ramis,et al.  MULTI2D - a computer code for two-dimensional radiation hydrodynamics , 2009, Comput. Phys. Commun..

[40]  B. Cho,et al.  Guiding, focusing, and collimated transport of hot electrons in a canal in the extended tip of cone targets. , 2009, Physical review letters.

[41]  S. Hansen,et al.  Enhanced hot-electron localization and heating in high-contrast ultraintense laser irradiation of microcone targets. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  M. Yu,et al.  Nonlinear laser focusing using a conical guide and generation of energetic ions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  P. Norreys,et al.  Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets , 2008 .

[44]  Kunioki Mima,et al.  Simulation and design study of cryogenic cone shell target for Fast Ignition Realization Experiment project , 2007 .

[45]  R. Mason Heating mechanisms in short-pulse laser-driven cone targets. , 2006, Physical review letters.

[46]  L. Brown,et al.  Charged Particle Motion in a Highly Ionized Plasma , 2005, physics/0501084.

[47]  Edward I. Moses,et al.  The National Ignition Facility: enabling fusion ignition for the 21st century , 2004 .

[48]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[49]  R. Stephens,et al.  Implosion of indirectly driven reentrant-cone shell target. , 2003, Physical review letters.

[50]  P. Norreys,et al.  Basic and integrated studies for fast ignition , 2003 .

[51]  M. D. Perry,et al.  Fast ignition by intense laser-accelerated proton beams. , 2001, Physical review letters.

[52]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[53]  Gu,et al.  Forward ion acceleration in thin films driven by a high-intensity laser , 2000, Physical review letters.

[54]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[55]  C. Toepffer,et al.  Stopping of heavy ions in plasmas at strong coupling , 1999 .

[56]  C. Toepffer,et al.  TIME-DEPENDENT STOPPING POWER AND INFLUENCE OF AN INFINITE MAGNETIC FIELD , 1998 .

[57]  R. Petrasso,et al.  Charged-particle stopping powers in inertial confinement fusion plasmas. , 1993, Physical review letters.

[58]  Li,et al.  Fokker-Planck equation for moderately coupled plasmas. , 1993, Physical review letters.

[59]  J. Meyer-ter-Vehn,et al.  MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics , 1988 .

[60]  Thomas Alan Mehlhorn,et al.  A finite material temperature model for ion energy deposition in ion‐driven inertial confinement fusion targets , 1981 .

[61]  G. Iafrate,et al.  Beam-Density Effect on the Stopping of Fast Charged Particles in Matter. , 1977 .

[62]  R. J. Mason,et al.  Thermonuclear burn characteristics of compressed deuterium‐tritium microspheres , 1974 .

[63]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .